Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 96RQ
To determine
The features which limits the use of polymer matrix composites.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
100
As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the
spring constant at time t is k(t) = t sin + N/m. If the mass-spring system has mass m = 2 kg and a
damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is
subjected to the harmonic external force f (t) = 100 cos 3t N. Find at least the first four nonzero terms in
a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement:
• Analytically (hand calculations)
Creating Simulink Model
Plot solutions for first two, three and four non-zero terms as well as the Simulink solution on the same graph
for the first 15 sec. The graph must be fully formatted by code.
Two springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set
in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its
equilibrium position a distance 2 m and then releasing both masses. if m₁ = m² = 1 kg, k₁ = 3 N/m and
k₂ = 2 N/m.
(y₁ = 0)
www
k₁ = 3
Jm₁ = 1
k2=2
www
(Net change in
spring length
=32-31)
(y₂ = 0)
m₂ = 1
32
32
System in
static
equilibrium
System in
motion
Figure Q3 - Coupled mass-spring system
Determine the equations of motion y₁ (t) and y₂(t) for the two masses m₁ and m₂ respectively:
Analytically (hand calculations)
Using MATLAB Numerical Functions (ode45)
Creating Simulink Model
Produce an animation of the system for all solutions for the first minute.
Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank
A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each
tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of
6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If,
initially, tank A contains pure water and tank B contains 20 kg of salt.
A
6 L/min
0.2 kg/L
x(t)
100 L
4 L/min
x(0) = 0 kg
3 L/min
1 L/min
B
y(t)
100 L
y(0) = 20 kg
2 L/min
Figure Q1 - Mixing problem for interconnected tanks
Determine the mass of salt in each tank at time t≥ 0:
Analytically (hand calculations)
Using MATLAB Numerical Functions (ode45)
Creating Simulink Model
Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.
Chapter 8 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 8 - Discuss the terms plastics and polymers. In...Ch. 8 - What are some naturally occurring nonmetallic...Ch. 8 - What are some material families that would be...Ch. 8 - How might plastics be defined from the viewpoints...Ch. 8 - What is the primary type of atomic bonding within...Ch. 8 - What is the difference between a saturated and an...Ch. 8 - What is an isomer?Ch. 8 - Describe and differentiate the two means of...Ch. 8 - What is a mer?Ch. 8 - What is degree of polymerization?
Ch. 8 - How does increasing the chain length tend to...Ch. 8 - In what way are copolymers similar to alloys in...Ch. 8 - Describe and differentiate thermoplastic and...Ch. 8 - Describe the mechanism by which thermoplastic...Ch. 8 - What does it mean when a polymer crystallizes? How...Ch. 8 - What are some of the ways that a thermoplastic...Ch. 8 - What are the four most common thermoplastic...Ch. 8 - Why are thermosetting polymers characteristically...Ch. 8 - How do thermosetting polymers respond to...Ch. 8 - Describe how thermoplastic or thermosetting...Ch. 8 - What are some attractive engineering properties of...Ch. 8 - What are some limiting properties of plastics, and...Ch. 8 - What are some environmental conditions that might...Ch. 8 - What is the most common polymer (accounting for...Ch. 8 - What are some reasons that additive agents are...Ch. 8 - What are some functions of a filler material in a...Ch. 8 - What are some of the more common filler materials...Ch. 8 - What is the function of a plasticizer?Ch. 8 - What is the difference between a dye and a...Ch. 8 - What is the role of a stabilizer or antioxidant?Ch. 8 - How might electrical conductivity be imparted to a...Ch. 8 - What is an oriented plastic, and what is the...Ch. 8 - What are some properties and characteristics of...Ch. 8 - Describe the use of plastic materials as...Ch. 8 - What are some potential benefits of using plastics...Ch. 8 - Describe some of the applications for foamed...Ch. 8 - Provide some examples where plastics have competed...Ch. 8 - What are some features of plastics that make them...Ch. 8 - In a cost comparison, why might cost per unit...Ch. 8 - How has the use of plastics grown in the...Ch. 8 - What kinds of plastics are most easily recycled?Ch. 8 - Why is the recycling of mixed plastics more...Ch. 8 - What are some recycling alternatives for...Ch. 8 - What are some of the natural materials used to...Ch. 8 - What are some of the approaches to producing a...Ch. 8 - What is the unique mechanical property of...Ch. 8 - How can cross�linking be used to control the...Ch. 8 - What is the cause of stress relaxation in...Ch. 8 - What are some of the materials that can be added...Ch. 8 - What are some of the limitations of natural...Ch. 8 - What are some of the common artificial elastomers?Ch. 8 - Prob. 52RQCh. 8 - Prob. 53RQCh. 8 - Prob. 54RQCh. 8 - Prob. 55RQCh. 8 - Prob. 56RQCh. 8 - Prob. 57RQCh. 8 - Prob. 58RQCh. 8 - Prob. 59RQCh. 8 - What kinds of ceramic products are classified as...Ch. 8 - Prob. 61RQCh. 8 - Prob. 62RQCh. 8 - Prob. 63RQCh. 8 - What is the unique feature of piezoelectric...Ch. 8 - Prob. 65RQCh. 8 - Prob. 66RQCh. 8 - Prob. 67RQCh. 8 - What are cermets, and what properties or...Ch. 8 - What are some of the attractive features of a...Ch. 8 - Prob. 70RQCh. 8 - Prob. 71RQCh. 8 - Prob. 72RQCh. 8 - Prob. 73RQCh. 8 - Prob. 74RQCh. 8 - Prob. 75RQCh. 8 - Prob. 76RQCh. 8 - Prob. 77RQCh. 8 - What is a composite material?Ch. 8 - What are the basic features of a composite...Ch. 8 - Prob. 80RQCh. 8 - Prob. 81RQCh. 8 - Prob. 82RQCh. 8 - What are some reasons for creating clad...Ch. 8 - Prob. 84RQCh. 8 - Prob. 85RQCh. 8 - Prob. 86RQCh. 8 - Prob. 87RQCh. 8 - Prob. 88RQCh. 8 - Prob. 89RQCh. 8 - Prob. 90RQCh. 8 - Prob. 91RQCh. 8 - What is the most common matrix material used in...Ch. 8 - Prob. 93RQCh. 8 - What are the attractive features of a...Ch. 8 - Prob. 95RQCh. 8 - Prob. 96RQCh. 8 - Prob. 97RQCh. 8 - Prob. 98RQCh. 8 - Prob. 99RQCh. 8 - Prob. 100RQCh. 8 - Prob. 101RQCh. 8 - Prob. 102RQCh. 8 - What are some of the limitations that might...Ch. 8 - Prob. 104RQCh. 8 - Prob. 105RQCh. 8 - Prob. 1PCh. 8 - Many of the materials presented in this chapter...Ch. 8 - Prob. 4PCh. 8 - Prob. 5PCh. 8 - Prob. 6PCh. 8 - Prob. 7PCh. 8 - Locate a current or recent article describing an...Ch. 8 - The array of medical devices spans a wide range of...Ch. 8 - Use the Internet and other sources to research...Ch. 8 - Prob. 2CSCh. 8 - The US Army helmet has evolved from sheet steel,...Ch. 8 - Prob. 4CS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5. Estimate the friction pressure gradient in a 10.15 cm bore unheated horizontal pipe for the following conditions: Fluid-propylene Pressure 8.175 bar Temperature-7°C Mass flow of liquid-2.42 kg/s. Density of liquid-530 kg/m³ Mass flow of vapour-0.605 kg/s. Density of vapour-1.48 kg/m³arrow_forwardDescribe the following HVAC systems. a) All-air systems b) All-water systems c) Air-water systems Graphically represent each system with a sketch.arrow_forwardTwo large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min 1 L/min B y(t) 100 L y(0) = 20 kg 2 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t≥ 0: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.arrow_forward
- ased on the corresponding mass flow rates (and NOT the original volumetric flow rates) determine: a) The mass flow rate of the mixed air (i.e., the combination of the two flows) leaving the chamber in kg/s. b) The temperature of the mixed air leaving the chamber. Please use PyscPro software for solving this question. Notes: For part (a), you will first need to find the density or specific volume for each state (density = 1/specific volume). The units the 'v' and 'a' are intended as subscripts: · kgv = kg_v = kgv = kilogram(s) [vapour] kga = kg_a =kga = kilogram(s) [air]arrow_forwardThe answers to this question s wasn't properly given, I need expert handwritten solutionsarrow_forwardI need expert handwritten solutions to this onlyarrow_forward
- Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min B y(t) 100 L y(0) = 20 kg 2 L/min 1 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t > 0: Analytically (hand calculations)arrow_forwardTwo springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m₂ = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. www.m k₁ = 3 (y₁ = 0). m₁ = 1 k2=2 (y₂ = 0) |m₂ = 1 Y2 y 2 System in static equilibrium (Net change in spring length =32-31) System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁(t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations)arrow_forward100 As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the spring constant at time t is k(t) = t sin N/m. If the mass-spring system has mass m = 2 kg and a damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is subjected to the harmonic external force f(t) = 100 cos 3t N. Find at least the first four nonzero terms in a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement: Analytically (hand calculations)arrow_forward
- this is answer to a vibrations question. in the last part it states an assumption of x2, im not sure where this assumption comes from. an answer would be greatly appreciatedarrow_forwardPlease answer with the sketches.arrow_forwardThe beam is made of elastic perfectly plastic material. Determine the shape factor for the cross section of the beam (Figure Q3). [Take σy = 250 MPa, yNA = 110.94 mm, I = 78.08 x 106 mm²] y 25 mm 75 mm I 25 mm 200 mm 25 mm 125 Figure Q3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
composite-materials; Author: Tonya Coffey;https://www.youtube.com/watch?v=Vu6ik-bcKf4;License: Standard youtube license