PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)
PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)
11th Edition
ISBN: 9780198826910
Author: ATKINS
Publisher: Oxford University Press
bartleby

Videos

Question
Book Icon
Chapter 8, Problem 8B.1BE
Interpretation Introduction

Interpretation:

The wavefunction for the excited state of helium having configuration 1s13s1 has to be stated.

Concept introduction:

For many electron systems, the total wavefunctions are taken as the product of the radial part of the various wavefunctions.  Total wavefunction is the product of spin and radial part.  Therefore, in order to obtain total wavefunction for many electron systems, the possible spins for all the electrons present in the system is taken into consideration.

Expert Solution & Answer
Check Mark

Answer to Problem 8B.1BE

The wavefunction for the excited state of helium having configuration 1s13s1 is shown below.

  ψHe1=12[(1π(2a0)e3/22fa0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)]α(1)α(2)ψHe2=12([(1π(2a0)e3/22fa0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)][β(2)α(1)β(1)α(2)])ψHe3=12[(1π(2a0)e3/22fa0)(142π(1a0)3/2(22fa0)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)]β(1)β(2)ψHe4=12([(1π(2a0)e3/22fa0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)][β(1)α(2)α(2)β(1)])

Explanation of Solution

The number of electrons in He is 2.  The electronic configuration of excited state is 1s13s1.  Therefore, there are only two rows and two columns and the value of n in the normalization constant is 2.  The rows represent electrons 1 and 2.  There are two electrons and they can be placed in 1s and 3s.  These two electrons can have any spin α or β.  Therefore, there are four possibilities for the construction of slater determinant.

The total wavefunction is represented as the product of space and spin part of the wavefunction.  The possibilities of arrangement of two electrons are given below.

Possibility 1:

The columns represent the spin orbitals 1sα and 3sα.  The slater determinant for the He is shown below.

    ψHe=121s(r1)α(1)1s(r2)α(2)3s(r1)α(1)3s(r2)α(2)=12[1s(r1)3s(r2)3s(r1)1s(r2)]α(1)α(2)

Where,

  • 1 and 2 represents the electrons.
  • α is the spin part of the wavefunction.

Possibility 2:

The columns represent the spin orbitals 1sα and 3sβ.  The slater determinant for the He is shown below.

    ψHe=121s(r1)α(1)1s(r2)β(1)3s(r1)α(2)3s(r2)β(2)=12([1s(r1)3s(r2)3s(r1)1s(r2)][β(2)α(1)β(1)α(2)])

Where,

  • 1 and 2 represents the electrons.
  • α and β are the spin part of the wavefunction.

Possibility 3:

The columns represent the spin orbitals 1sβ and 3sβ.  The slater determinant for the He is shown below.

    ψHe=121s(r1)β(1)1s(r2)β(2)3s(r1)β(1)3s(r2)β(2)=12[1s(r1)3s(r2)3s(r1)1s(r2)]β(1)β(2)

Where,

  • 1 and 2 represents the electrons.
  • β is the spin part of the wavefunction.

Possibility 4:

The columns represent the spin orbitals 1sβ and 3sα.  The slater determinant for the He is shown below.

    ψHe=121s(r1)β(1)1s(r2)α(2)3s(r1)β(1)3s(r2)α(2)=12([1s(r1)3s(r2)3s(r1)1s(r2)][β(1)α(2)α(2)β(1)])

Where,

  • 1 and 2 represents the electrons.
  • α and β are the spin part of the wavefunction.

The wavefunctions for 1s and 3s orbitals are given below.

    ψ1s=1π(Zeffa0)e3/22fa0ψ3s=1830(Zeffa0)3/2(27(1835a0)+(2fa0)2)e2f/3a0

The values of Zeff for 1s and 3s orbitals are given as 2 and 1 respectively.

Substitute the value of Zeff in the wavefunctions as shown below.

    ψ1s=1π(2a0)e3/22fa0ψ3s=1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0

Substitute the wavefunctions in order to get four possible total wavefunctions for 1s13s1 state of helium as shown below.

  ψHe1=12[(1π(2a0)e3/22fa0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)]α(1)α(2)ψHe2=12([(1π(2a0)e3/22fa0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)][β(2)α(1)β(1)α(2)])ψHe3=12[(1π(2a0)e3/22fa0)(142π(1a0)3/2(22fa0)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)]β(1)β(2)ψHe4=12([(1π(2a0)e3/22fa0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)][β(1)α(2)α(2)β(1)])

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1/2 - 51% + » GAY Organic Reactions Assignment /26 Write the type of reaction that is occurring on the line provided then complete the reaction. Only include the major products and any byproducts (e.g. H₂O) but no minor products. Please use either full structural diagrams or the combination method shown in the lesson. Skeletal/line diagrams will not be accepted. H3C 1. 2. CH3 A Acid OH Type of Reaction: NH Type of Reaction: + H₂O Catalyst + HBr 3. Type of Reaction: H3C 4. Type Reaction: 5. H3C CH2 + H2O OH + [0] CH3 Type of Reaction: 6. OH CH3 HO CH3 + Type of Reaction: 7. Type of Reaction: + [H]
humbnai Concentration Terms[1].pdf ox + New Home Edit Sign in Comment Convert Page Fill & Sign Protect Tools Batch +WPS A Free Trial Share Inter Concreting Concentration forms. Hydrogen peroxide is a powerful oxidizing agent wed in concentrated solution in rocket fuels and in dilute solution as a hair bleach. An aqueous sulation of H2O2 is 30% by mass and has density of #liligime calculat the Ⓒmolality ⑥mole fraction of molarity. 20 9. B. A sample of Commercial Concentrated hydrochloric ET
If a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.

Chapter 8 Solutions

PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)

Ch. 8 - Prob. 8A.2AECh. 8 - Prob. 8A.2BECh. 8 - Prob. 8A.3AECh. 8 - Prob. 8A.3BECh. 8 - Prob. 8A.4AECh. 8 - Prob. 8A.4BECh. 8 - Prob. 8A.5AECh. 8 - Prob. 8A.5BECh. 8 - Prob. 8A.6AECh. 8 - Prob. 8A.6BECh. 8 - Prob. 8A.7AECh. 8 - Prob. 8A.7BECh. 8 - Prob. 8A.9AECh. 8 - Prob. 8A.10AECh. 8 - Prob. 8A.10BECh. 8 - Prob. 8A.11AECh. 8 - Prob. 8A.11BECh. 8 - Prob. 8A.12AECh. 8 - Prob. 8A.12BECh. 8 - Prob. 8A.1PCh. 8 - Prob. 8A.2PCh. 8 - Prob. 8A.3PCh. 8 - Prob. 8A.4PCh. 8 - Prob. 8A.6PCh. 8 - Prob. 8A.7PCh. 8 - Prob. 8A.8PCh. 8 - Prob. 8A.9PCh. 8 - Prob. 8A.10PCh. 8 - Prob. 8A.11PCh. 8 - Prob. 8B.1DQCh. 8 - Prob. 8B.2DQCh. 8 - Prob. 8B.3DQCh. 8 - Prob. 8B.4DQCh. 8 - Prob. 8B.1AECh. 8 - Prob. 8B.1BECh. 8 - Prob. 8B.2AECh. 8 - Prob. 8B.2BECh. 8 - Prob. 8B.3AECh. 8 - Prob. 8B.3BECh. 8 - Prob. 8B.4AECh. 8 - Prob. 8B.4BECh. 8 - Prob. 8B.5AECh. 8 - Prob. 8B.5BECh. 8 - Prob. 8B.1PCh. 8 - Prob. 8B.2PCh. 8 - Prob. 8B.3PCh. 8 - Prob. 8B.4PCh. 8 - Prob. 8B.5PCh. 8 - Prob. 8C.1DQCh. 8 - Prob. 8C.2DQCh. 8 - Prob. 8C.3DQCh. 8 - Prob. 8C.4DQCh. 8 - Prob. 8C.1AECh. 8 - Prob. 8C.1BECh. 8 - Prob. 8C.2AECh. 8 - Prob. 8C.2BECh. 8 - Prob. 8C.3AECh. 8 - Prob. 8C.3BECh. 8 - Prob. 8C.4AECh. 8 - Prob. 8C.4BECh. 8 - Prob. 8C.5AECh. 8 - Prob. 8C.5BECh. 8 - Prob. 8C.6AECh. 8 - Prob. 8C.6BECh. 8 - Prob. 8C.7AECh. 8 - Prob. 8C.7BECh. 8 - Prob. 8C.8AECh. 8 - Prob. 8C.8BECh. 8 - Prob. 8C.9AECh. 8 - Prob. 8C.9BECh. 8 - Prob. 8C.10AECh. 8 - Prob. 8C.10BECh. 8 - Prob. 8C.11AECh. 8 - Prob. 8C.11BECh. 8 - Prob. 8C.12AECh. 8 - Prob. 8C.12BECh. 8 - Prob. 8C.13AECh. 8 - Prob. 8C.13BECh. 8 - Prob. 8C.14AECh. 8 - Prob. 8C.14BECh. 8 - Prob. 8C.1PCh. 8 - Prob. 8C.2PCh. 8 - Prob. 8C.3PCh. 8 - Prob. 8C.4PCh. 8 - Prob. 8C.5PCh. 8 - Prob. 8C.6PCh. 8 - Prob. 8C.7PCh. 8 - Prob. 8C.8PCh. 8 - Prob. 8C.9PCh. 8 - Prob. 8C.10PCh. 8 - Prob. 8C.11PCh. 8 - Prob. 8C.12PCh. 8 - Prob. 8.1IACh. 8 - Prob. 8.2IACh. 8 - Prob. 8.3IA
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY
QUANTUM MECHANICAL MODEL/Atomic Structure-21E; Author: H to O Chemistry;https://www.youtube.com/watch?v=mYHNUy5hPQE;License: Standard YouTube License, CC-BY