PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)
PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)
11th Edition
ISBN: 9780198826910
Author: ATKINS
Publisher: Oxford University Press
bartleby

Videos

Question
Book Icon
Chapter 8, Problem 8B.1BE
Interpretation Introduction

Interpretation:

The wavefunction for the excited state of helium having configuration 1s13s1 has to be stated.

Concept introduction:

For many electron systems, the total wavefunctions are taken as the product of the radial part of the various wavefunctions.  Total wavefunction is the product of spin and radial part.  Therefore, in order to obtain total wavefunction for many electron systems, the possible spins for all the electrons present in the system is taken into consideration.

Expert Solution & Answer
Check Mark

Answer to Problem 8B.1BE

The wavefunction for the excited state of helium having configuration 1s13s1 is shown below.

  ψHe1=12[(1π(2a0)e3/22fa0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)]α(1)α(2)ψHe2=12([(1π(2a0)e3/22fa0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)][β(2)α(1)β(1)α(2)])ψHe3=12[(1π(2a0)e3/22fa0)(142π(1a0)3/2(22fa0)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)]β(1)β(2)ψHe4=12([(1π(2a0)e3/22fa0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)][β(1)α(2)α(2)β(1)])

Explanation of Solution

The number of electrons in He is 2.  The electronic configuration of excited state is 1s13s1.  Therefore, there are only two rows and two columns and the value of n in the normalization constant is 2.  The rows represent electrons 1 and 2.  There are two electrons and they can be placed in 1s and 3s.  These two electrons can have any spin α or β.  Therefore, there are four possibilities for the construction of slater determinant.

The total wavefunction is represented as the product of space and spin part of the wavefunction.  The possibilities of arrangement of two electrons are given below.

Possibility 1:

The columns represent the spin orbitals 1sα and 3sα.  The slater determinant for the He is shown below.

    ψHe=121s(r1)α(1)1s(r2)α(2)3s(r1)α(1)3s(r2)α(2)=12[1s(r1)3s(r2)3s(r1)1s(r2)]α(1)α(2)

Where,

  • 1 and 2 represents the electrons.
  • α is the spin part of the wavefunction.

Possibility 2:

The columns represent the spin orbitals 1sα and 3sβ.  The slater determinant for the He is shown below.

    ψHe=121s(r1)α(1)1s(r2)β(1)3s(r1)α(2)3s(r2)β(2)=12([1s(r1)3s(r2)3s(r1)1s(r2)][β(2)α(1)β(1)α(2)])

Where,

  • 1 and 2 represents the electrons.
  • α and β are the spin part of the wavefunction.

Possibility 3:

The columns represent the spin orbitals 1sβ and 3sβ.  The slater determinant for the He is shown below.

    ψHe=121s(r1)β(1)1s(r2)β(2)3s(r1)β(1)3s(r2)β(2)=12[1s(r1)3s(r2)3s(r1)1s(r2)]β(1)β(2)

Where,

  • 1 and 2 represents the electrons.
  • β is the spin part of the wavefunction.

Possibility 4:

The columns represent the spin orbitals 1sβ and 3sα.  The slater determinant for the He is shown below.

    ψHe=121s(r1)β(1)1s(r2)α(2)3s(r1)β(1)3s(r2)α(2)=12([1s(r1)3s(r2)3s(r1)1s(r2)][β(1)α(2)α(2)β(1)])

Where,

  • 1 and 2 represents the electrons.
  • α and β are the spin part of the wavefunction.

The wavefunctions for 1s and 3s orbitals are given below.

    ψ1s=1π(Zeffa0)e3/22fa0ψ3s=1830(Zeffa0)3/2(27(1835a0)+(2fa0)2)e2f/3a0

The values of Zeff for 1s and 3s orbitals are given as 2 and 1 respectively.

Substitute the value of Zeff in the wavefunctions as shown below.

    ψ1s=1π(2a0)e3/22fa0ψ3s=1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0

Substitute the wavefunctions in order to get four possible total wavefunctions for 1s13s1 state of helium as shown below.

  ψHe1=12[(1π(2a0)e3/22fa0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)]α(1)α(2)ψHe2=12([(1π(2a0)e3/22fa0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)][β(2)α(1)β(1)α(2)])ψHe3=12[(1π(2a0)e3/22fa0)(142π(1a0)3/2(22fa0)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)]β(1)β(2)ψHe4=12([(1π(2a0)e3/22fa0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1830(1a0)3/2(27(1835a0)+(2fa0)2)e2f/3a0)(1π(2a0)e3/22fa0)][β(1)α(2)α(2)β(1)])

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
22
PLEASE READ!!! I DONT WANT EXAMPLES, I DONT WANT WORDS OR PARAGRAPHS FOR THE MECHANISM!!! THANKS First image: QUESTION 6. I have to show, with ARROWS and STRUCTURES, the mechanism of the reaction at the bottom. Also I have to show by mecanism why the reaction wouldn't work if the alcohol was primary. I also tried to draw the mechanism, tell me what to change. Please note that its an AMIDE thats formed not an AMINE the nitrogen has ONE hydrogen and one Phenyl-C-Phenyl. I already asked for this mechanism and got as a final product ...-NH2 not whats shown on the picture, thank you Ths second part. QUESTION 3. I just need a way to synthesize the lactone A, I already started please continue from where I left it  Second image: I simply need the products, substrates or reagents, thank you
Indicate how to prepare a 10% sodium hydroxide (NaOH) solution to a slightly alkaline pH.

Chapter 8 Solutions

PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)

Ch. 8 - Prob. 8A.2AECh. 8 - Prob. 8A.2BECh. 8 - Prob. 8A.3AECh. 8 - Prob. 8A.3BECh. 8 - Prob. 8A.4AECh. 8 - Prob. 8A.4BECh. 8 - Prob. 8A.5AECh. 8 - Prob. 8A.5BECh. 8 - Prob. 8A.6AECh. 8 - Prob. 8A.6BECh. 8 - Prob. 8A.7AECh. 8 - Prob. 8A.7BECh. 8 - Prob. 8A.9AECh. 8 - Prob. 8A.10AECh. 8 - Prob. 8A.10BECh. 8 - Prob. 8A.11AECh. 8 - Prob. 8A.11BECh. 8 - Prob. 8A.12AECh. 8 - Prob. 8A.12BECh. 8 - Prob. 8A.1PCh. 8 - Prob. 8A.2PCh. 8 - Prob. 8A.3PCh. 8 - Prob. 8A.4PCh. 8 - Prob. 8A.6PCh. 8 - Prob. 8A.7PCh. 8 - Prob. 8A.8PCh. 8 - Prob. 8A.9PCh. 8 - Prob. 8A.10PCh. 8 - Prob. 8A.11PCh. 8 - Prob. 8B.1DQCh. 8 - Prob. 8B.2DQCh. 8 - Prob. 8B.3DQCh. 8 - Prob. 8B.4DQCh. 8 - Prob. 8B.1AECh. 8 - Prob. 8B.1BECh. 8 - Prob. 8B.2AECh. 8 - Prob. 8B.2BECh. 8 - Prob. 8B.3AECh. 8 - Prob. 8B.3BECh. 8 - Prob. 8B.4AECh. 8 - Prob. 8B.4BECh. 8 - Prob. 8B.5AECh. 8 - Prob. 8B.5BECh. 8 - Prob. 8B.1PCh. 8 - Prob. 8B.2PCh. 8 - Prob. 8B.3PCh. 8 - Prob. 8B.4PCh. 8 - Prob. 8B.5PCh. 8 - Prob. 8C.1DQCh. 8 - Prob. 8C.2DQCh. 8 - Prob. 8C.3DQCh. 8 - Prob. 8C.4DQCh. 8 - Prob. 8C.1AECh. 8 - Prob. 8C.1BECh. 8 - Prob. 8C.2AECh. 8 - Prob. 8C.2BECh. 8 - Prob. 8C.3AECh. 8 - Prob. 8C.3BECh. 8 - Prob. 8C.4AECh. 8 - Prob. 8C.4BECh. 8 - Prob. 8C.5AECh. 8 - Prob. 8C.5BECh. 8 - Prob. 8C.6AECh. 8 - Prob. 8C.6BECh. 8 - Prob. 8C.7AECh. 8 - Prob. 8C.7BECh. 8 - Prob. 8C.8AECh. 8 - Prob. 8C.8BECh. 8 - Prob. 8C.9AECh. 8 - Prob. 8C.9BECh. 8 - Prob. 8C.10AECh. 8 - Prob. 8C.10BECh. 8 - Prob. 8C.11AECh. 8 - Prob. 8C.11BECh. 8 - Prob. 8C.12AECh. 8 - Prob. 8C.12BECh. 8 - Prob. 8C.13AECh. 8 - Prob. 8C.13BECh. 8 - Prob. 8C.14AECh. 8 - Prob. 8C.14BECh. 8 - Prob. 8C.1PCh. 8 - Prob. 8C.2PCh. 8 - Prob. 8C.3PCh. 8 - Prob. 8C.4PCh. 8 - Prob. 8C.5PCh. 8 - Prob. 8C.6PCh. 8 - Prob. 8C.7PCh. 8 - Prob. 8C.8PCh. 8 - Prob. 8C.9PCh. 8 - Prob. 8C.10PCh. 8 - Prob. 8C.11PCh. 8 - Prob. 8C.12PCh. 8 - Prob. 8.1IACh. 8 - Prob. 8.2IACh. 8 - Prob. 8.3IA
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY
QUANTUM MECHANICAL MODEL/Atomic Structure-21E; Author: H to O Chemistry;https://www.youtube.com/watch?v=mYHNUy5hPQE;License: Standard YouTube License, CC-BY