Concept explainers
(a)
Interpretation:
The condensed ground-state electron configuration of
Concept introduction:
The electronic configuration tells about the distribution of electrons in various atomic orbitals. The condensed electronic configuration is a way to write the electronic configuration where the inner shell configurations are compressed to the nearest noble gas configuration and only the valence shell configuration is written in the expanded.
Paramagnetism is the property of materials due to which they are weakly attracted by an externally applied magnetic field. It arises due to the presence of unpaired electrons in the atoms so the atoms with incompletely filled atomic orbitals are paramagnetic. The unpaired electrons have magnetic dipole moment and therefore act as tiny magnets.
(b)
Interpretation:
The condensed ground-state electron configuration of
Concept introduction:
The electronic configuration tells about the distribution of electrons in various atomic orbitals. The condensed electronic configuration is a way to write the electronic configuration where the inner shell configurations are compressed to the nearest noble gas configuration and only the valence shell configuration is written in the expanded.
Paramagnetism is the property of materials due to which they are weakly attracted by an externally applied magnetic field. It arises due to the presence of unpaired electrons in the atoms so the atoms with incompletely filled atomic orbitals are paramagnetic. The unpaired electrons have magnetic dipole moment and therefore act as tiny magnets.
(c)
Interpretation:
The condensed ground-state electron configuration of
Concept introduction:
The electronic configuration tells about the distribution of electrons in various atomic orbitals. The condensed electronic configuration is a way to write the electronic configuration where the inner shell configurations are compressed to the nearest noble gas configuration and only the valence shell configuration is written in the expanded.
Paramagnetism is the property of materials due to which they are weakly attracted by an externally applied magnetic field. It arises due to the presence of unpaired electrons in the atoms so the atoms with incompletely filled atomic orbitals are paramagnetic. The unpaired electrons have magnetic dipole moment and therefore act as tiny magnets.
(d)
Interpretation:
The condensed ground-state electron configuration of
Concept introduction:
The electronic configuration tells about the distribution of electrons in various atomic orbitals. The condensed electronic configuration is a way to write the electronic configuration where the inner shell configurations are compressed to the nearest noble gas configuration and only the valence shell configuration is written in the expanded.
Paramagnetism is the property of materials due to which they are weakly attracted by an externally applied magnetic field. It arises due to the presence of unpaired electrons in the atoms so the atoms with incompletely filled atomic orbitals are paramagnetic. The unpaired electrons have magnetic dipole moment and therefore act as tiny magnets.
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Connect 2-Year Access Card for Chemistry: The Molecular Nature of Matter and Change
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY