The mass of sodium phosphate required to precipitate 4 .8 g calcium chloride is to be calculated. Concept introduction: The molar mass is used as the conversion factor to calculate the required mass of reactant needed to precipitate the other reactant. The stoichiometry of both the reactants is required from the balanced chemical reaction to calculate the mass of the reactant. Mass to mole conversion factor = number of moles of compound molar mass of compound Mole to mole conversion factor= number of moles of product number of moles of reactant Mole to mass conversion factor = molar mass of compound number of moles of compound For theoretical yield, steps are mass to mole conversion → mole to mole conversion → mole to mass conversion.
The mass of sodium phosphate required to precipitate 4 .8 g calcium chloride is to be calculated. Concept introduction: The molar mass is used as the conversion factor to calculate the required mass of reactant needed to precipitate the other reactant. The stoichiometry of both the reactants is required from the balanced chemical reaction to calculate the mass of the reactant. Mass to mole conversion factor = number of moles of compound molar mass of compound Mole to mole conversion factor= number of moles of product number of moles of reactant Mole to mass conversion factor = molar mass of compound number of moles of compound For theoretical yield, steps are mass to mole conversion → mole to mole conversion → mole to mass conversion.
Solution Summary: The author explains that the molar mass is used as the conversion factor to calculate the required mass of the reactant needed to precipitate the other.
Study of body parts and their functions. In this combined field of study, anatomy refers to studying the body structure of organisms, whereas physiology refers to their function.
Chapter 8, Problem 85E
Interpretation Introduction
Interpretation:
The mass of sodium phosphate required to precipitate 4.8 g calcium chloride is to be calculated.
Concept introduction:
The molar mass is used as the conversion factor to calculate the required mass of reactant needed to precipitate the other reactant.
The stoichiometry of both the reactants is required from the balanced chemical reaction to calculate the mass of the reactant.
Mass to mole conversion factor = number of moles of compoundmolar mass of compound
Mole to mole conversion factor=number of moles of productnumber of moles of reactant
Mole to mass conversion factor = molar mass of compoundnumber of moles of compound
For theoretical yield, steps are mass to mole conversion → mole to mole conversion → mole to mass conversion.
Laser. Indicate the relationship between metastable state and stimulated emission.
The table includes macrostates characterized by 4 energy levels (&) that are
equally spaced but with different degrees of occupation.
a) Calculate the energy of all the macrostates (in joules). See if they all have
the same energy and number of particles.
b) Calculate the macrostate that is most likely to exist. For this macrostate,
show that the population of the levels is consistent with the Boltzmann
distribution.
macrostate 1 macrostate 2 macrostate 3
ε/k (K) Populations
Populations
Populations
300
5
3
4
200
7
9
8
100
15
17
16
0
33
31
32
DATO: k = 1,38×10-23 J K-1
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.