The mass of KO 2 is to be determined, which can produce enough amount of oxygen for the users present in mine. Concept introduction: When mass of product is given and the mass of reactant is to be determined, then follow the following solution map: given mass of product → moles of product → By using conversion factor moles of reactant → mass of reactant The conversion factor used to convert the moles of product into the moles of reactant is basically the stoichiometric relationship between moles of product and moles of reactant. The conversion factor is obtained from the balanced chemical equation. The mass of reactant or product is converted into their corresponding moles by the use of their corresponding molar masses. In this given problem, the reactant is KO 2 and product is O 2 . To calculate the mass of KO 2 required in grams for the production of given mass of O 2 , follow the following solution map: mass of O 2 → moles of O 2 → By using conversion factor moles of KO 2 → mass of KO 2
The mass of KO 2 is to be determined, which can produce enough amount of oxygen for the users present in mine. Concept introduction: When mass of product is given and the mass of reactant is to be determined, then follow the following solution map: given mass of product → moles of product → By using conversion factor moles of reactant → mass of reactant The conversion factor used to convert the moles of product into the moles of reactant is basically the stoichiometric relationship between moles of product and moles of reactant. The conversion factor is obtained from the balanced chemical equation. The mass of reactant or product is converted into their corresponding moles by the use of their corresponding molar masses. In this given problem, the reactant is KO 2 and product is O 2 . To calculate the mass of KO 2 required in grams for the production of given mass of O 2 , follow the following solution map: mass of O 2 → moles of O 2 → By using conversion factor moles of KO 2 → mass of KO 2
Solution Summary: The author explains that the mass of KO_2 is to be determined, which can produce enough amount of oxygen for the users present in mine.
The mass of KO2 is to be determined, which can produce enough amount of oxygen for the users present in mine.
Concept introduction:
When mass of product is given and the mass of reactant is to be determined, then follow the following solution map:
givenmassofproduct→moles of product→Byusingconversionfactormolesofreactant→massofreactant
The conversion factor used to convert the moles of product into the moles of reactant is basically the stoichiometric relationship between moles of product and moles of reactant. The conversion factor is obtained from the balanced chemical equation. The mass of reactant or product is converted into their corresponding moles by the use of their corresponding molar masses.
In this given problem, the reactant is KO2 and product is O2. To calculate the mass of KO2 required in grams for the production of given mass of O2, follow the following solution map:
massofO2→moles of O2→ByusingconversionfactormolesofKO2→massofKO2
Laser. Indicate the relationship between metastable state and stimulated emission.
The table includes macrostates characterized by 4 energy levels (&) that are
equally spaced but with different degrees of occupation.
a) Calculate the energy of all the macrostates (in joules). See if they all have
the same energy and number of particles.
b) Calculate the macrostate that is most likely to exist. For this macrostate,
show that the population of the levels is consistent with the Boltzmann
distribution.
macrostate 1 macrostate 2 macrostate 3
ε/k (K) Populations
Populations
Populations
300
5
3
4
200
7
9
8
100
15
17
16
0
33
31
32
DATO: k = 1,38×10-23 J K-1
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell