Concept explainers
A cylindrical pressure vessel having a radius r = 14 in. and wall thickness t = 0,5 in, is subjected to internal pressure p = 375 psi, In addition, a torque T = 90 kip-ft acts at each end of the cylinder (see figure),
(a) Determine the maximum tensile stress ctniXand the maximum in-plane shear stress Tmjv in the wall of the cylinder.
(b) If the allowable in-plane shear stress is 4.5 ksi, what is the maximum allowable torque T\
(c) If 7 = 150 kip-ft and allowable in-plane shear and allowable normal stresses are 4.5 ksi and 11.5 ksi, respectively, what is the minimum required wall thickness
(a)
The maximum tensile stress
Answer to Problem 8.5.7P
The maximum tensile stress is
Explanation of Solution
Given Information:
Type of vessel = cylindrical
Radius =
Internal pressure =
Wall thickness =
Torque =
Concept used:
Where
Calculation:
Use the following relation to find the longitudinal stress.
Here, wall thickness is
Substitute
Use the following relation to find the hoop stress.
Substitute
Use the following relation to find the shear stress.
Here, torque is
Express the value of
Substitute
From equation
Find the maximum stress
Use the following relation to find the principal stresses.
Substitute
Calculate the principal stress,
As
Use the following relation to find the maximum in plane shear stress
Substitute
Hence, the maximum shear stress is
Conclusion
The values are found by the concept of longitudinal stress and hoop stress.
(b)
Maximum torque.
Answer to Problem 8.5.7P
The maximum torque is
Explanation of Solution
Given Information:
Concept used:
Calculation:
Find the maximum torque
Substitute
Conclusion:
The maximum torque is calculated by equating 1p , Tmax, r, etc.
(C)
What is the minimum required wall thickness.
Answer to Problem 8.5.7P
The minimum required wall thickness is
Explanation of Solution
Given Information:
Concept used:
Calculation:
Here, allowable in plane shear stress is
Substitute
Express the value of
Here, assumed
Variable are
Evaluate the value of
Evaluate the value of
Substitute
Substitute the value of
Use the trial and error method to find the thickness
Trial
Substitute
Trial
Substitute
Trial
Substitute
Substitute
Express the allowable in plane shear stress.
Substitute
Substitute
As
Hence, from the trial and error method the minimum wall thickness
Conclusion:
The minimum thickness is calculated by trial and error method.
Want to see more full solutions like this?
Chapter 8 Solutions
Bundle: Mechanics Of Materials, Loose-leaf Version, 9th + Mindtap Engineering, 2 Terms (12 Months) Printed Access Card
- -11 A solid steel bar (G = 11.8 X 106 psi ) of diameter d = 2,0 in. is subjected to torques T = 8.0 kip-in. acting in the directions shown in the figure. Determine the maximum shear, tensile, and compressive stresses in the bar and show these stresses on sketches of properly oriented stress elements. Determine the corresponding maximum strains (shear, tensile, and compressive) in the bar and show these strains on sketches of the deformed elements.arrow_forwardA hemispherical window (or viewport) in a decompression chamber (see figure) is subjected to an internal air pressure of 85 psi. The window is attached to the wall of the chamber by 14 bolts. (a) Find the tensile force Fin each bolt and the tensile stress (T in the viewport if the radius of the hemisphere is 14 in. and its thickness is 1.25 in. (b) If the yield stress for each of the 14 bolts is 50 ksi and the factor of safety is 3.0, Find the required bolt diameter. (c) If the stress in the viewport is limited to 500 psi, find the required radius of the hemisphere.arrow_forward: A hollow, pressurized sphere having a radius r = 4.8 in, and wall thickness t = 0.4 in. is lowered into a lake (see figure). The compressed air in the tank is at a pressure of 24 psi (gage pressure when the tank: is out of the water). At what depth D0will the wall of the tank be subjected to a compressive stress of 90 psi?arrow_forward
- -3 An element of aluminum in the form of a rectangular parallelepiped (see figure) of dimensions a = 5.5 in., h = 4.5 in, and c = 3.5 in. is subjected to iriaxial stresses = 12,500 psi, o. = —5000 psi, and ci. = —1400 psi acting on the x,i, and z faces, respectively. Determine the following quantities: (a) the maxim um shear stress in the material; (b) the changes ..la, .11. and 1c in the dimensions of the element: (C) the change .IJ’ in the volume: (d) the strain energy U stored in the element: (e) the maximum value of cr1 when the change in volume must be limited to 0.021%; and (f) the required value of o when the strain energy must be 900 in.-lb. (Assume E = 10,400 ksi and v = 0.33.)arrow_forward-18 through 7.4-25 An clement in plane stress is subjected to stresses sx,??y, and r. (see figure). Using Mohr’s circle, determine (a) the principal stresses and (b) the maximum shear stresses and associated normal stresses. Show all results on sketches of properly oriented elements. 7.4-19 ??x=800 psi. ??y=-2200 psi, ??xy. =2900 psiarrow_forwardA tubular bar with outside diameterd2= 4.0 in, is twisted by torques T = 70,0 kip-in. (see figure). Under the action of these torques, the maximum tensile stress in the bar is found to be 6400 psi. Determine the inside diameter rtf of the bar. If the bar has length L = 48.0 in. and is made of aluminum with shear modulus G = 4,0 × 106 psi, what is the angle of twist d (in degrees) between the ends of the bar? (c) Determine the maximum shear strain y (in radians)?arrow_forward
- A vertical pole of solid, circular cross section is twisted by horizontal forces P = 5kN acting at the ends of a rigid horizontal arm AB (see figure part a). The distance from the outside of the pole to the line of action of each force is c = 125 mm (sec figure part b) and the pole height L = 350 mm. (a) If the allowable shear stress in the pole is 30 MPa, what is the minimum required diameter dminof the pole? (b) What is the torsional stiffness of the pole (kN · m/rad)? Assume that G = 28 GPa. (c) If two translation al springs, each with stiffness k =2550 kN/m, are added at 2c/5 from A and B (see figure part c), repeat part (a) to find dmin. Hint: Consider the pole and pair of springs as "springs in parallel."arrow_forwardA plastic bar of rectangular cross section (ft = 1.5 in. and h = 3 in.) fits snugly between rigid supporls at room temperature (68oF) but with no initial stress (see Figure). When the temperature of the bar is raised to 160oF, the compressive stress on an inclined plane pq at mid-span becomes 1700 psi. (a) What is the shear stress on plane pq? (Assume a = 60 × 10-6/*t and E = 450 × 103psi.) (b) Draw a stress element oriented to plane pq and show the stresses acting on all laces of this element. (c) If the allowable normal stress is 3400 psi and the allowable shear stress is 1650 psi. what is the maximum load P (in the positive x direction), which can be added at the quarter point (in addition to thermal effects given) without exceeding allowable stress values in the bar?arrow_forwardA copper bar with a rectangular cross section is held without stress between rigid supports (see figure). Subsequently, the temperature of the bar is raised 50°C (a) Determine the stresses on all faces of the elements A and B, and show these stresses on sketches of the elements. (Assume = 17.5 × 10-6/? and E = 120 GPa ) (b) If the shear stress at B is known to be 48 MPa at some inclination 8, find anglearrow_forward
- A thin-walled circular tube and a solid circular bar of the same material (see figure) are subjected to torsion. The tube and bar have the same cross-sectional area and the same length. What is the ratio of the strain energy U1in the tube to the strain energy U2in the solid bar if the maximum shear stresses are the same in both cases? (For the tube, use the approximate theory for thin-walled bars.)arrow_forward• - 3 A rectangular plate in biaxial stress (see figure) is subjected to normal stresses u = 67 MPa (tension) and s = -23 MPa (compression). The plate has dimensions 400 X 550 X 20 mm and is made of steel with E = 200 GPa and v = 0.30. (a) Determine the maximum in-plane shear strain ?max in the plate. (b) Determine the change ?t in the thickness of the plate. (c) Determine the change ?t in the volume of the plate.arrow_forwardA square steel tube of a length L = 20 ft and width b2= 10.0 in. is hoisted by a crane (see figure). The lube hangs from a pin of diameter d that is held by the cables at points A and B. The cross section is a hollow square with an inner dimension b1= 8.5 in. and outer dimension b2= 10,0 in. The allowable shear stress in the pin is 8,700 psi. and the allowable bearing stress between the pin and the tube is 13,000 psi. Determine the minimum diameter of the pin in order to support the weight of the tube. Note: Disregard the rounded corners of the tube when calculating its weight.arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning