EBK LABORATORY MANUAL FOR GENERAL, ORGA
3rd Edition
ISBN: 9780321918352
Author: Timberlake
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 8.55AP
Summary Introduction
To determine:
The solvent and solute in a compound called tincture Benzoin that is used before applying casts to the skin. This solution has 10 % Benzoin and 90% ethanol.
Introduction:
Tincture Benzoin is a pungent solution of Benzoin resin in ethanol. It is a botanical product derived from the styraceae tree, which grows in tropical Asia. It is used as antiseptic preparation that will protect the skin from adhesive or harsh body fluid.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
EBK LABORATORY MANUAL FOR GENERAL, ORGA
Ch. 8 - Prob. 8.1PPCh. 8 - Prob. 8.2PPCh. 8 - Prob. 8.3PPCh. 8 - Prob. 8.4PPCh. 8 - Prob. 8.5PPCh. 8 - Prob. 8.6PPCh. 8 - Prob. 8.7PPCh. 8 - Prob. 8.8PPCh. 8 - Explain what is happening in the following...Ch. 8 - Explain what is happening in the following...
Ch. 8 - Where would you expect a freshly poured glass of...Ch. 8 - Hyperbaric oxygen chambers contain 100 percent...Ch. 8 - Predict if the following will fully' dissociate,...Ch. 8 - Prob. 8.14PPCh. 8 - Provide a balanced equation for the hydration of...Ch. 8 - Prob. 8.16PPCh. 8 - Prob. 8.17PPCh. 8 - Prob. 8.18PPCh. 8 - How many equivalents of K+ ore present in a...Ch. 8 - Prob. 8.20PPCh. 8 - Prob. 8.21PPCh. 8 - Prob. 8.22PPCh. 8 - Prob. 8.23PPCh. 8 - Prob. 8.24PPCh. 8 - Prob. 8.25PPCh. 8 - Prob. 8.26PPCh. 8 - Prob. 8.27PPCh. 8 - Prob. 8.28PPCh. 8 - Prob. 8.29PPCh. 8 - Prob. 8.30PPCh. 8 - Prob. 8.31PPCh. 8 - Calculate the percent mass, volume (% m/v) for the...Ch. 8 - (Calculate the percent mass/Volume (% m/v) for the...Ch. 8 - What is the concentration in % (m/m) of a solution...Ch. 8 - Prob. 8.35PPCh. 8 - Prob. 8.36PPCh. 8 - What is the concentration in ppm of a solution...Ch. 8 - Prob. 8.38PPCh. 8 - How many liters of a 0.90% (m/v) NaCl solution can...Ch. 8 - Prob. 8.40PPCh. 8 - What would the concentration of the resulting...Ch. 8 - Prob. 8.42PPCh. 8 - How would you prepare 250 mL of a 0.225% (m/v)...Ch. 8 - Prob. 8.44PPCh. 8 - Prob. 8.45PPCh. 8 - Prob. 8.46PPCh. 8 - Prob. 8.47PPCh. 8 - Prob. 8.48PPCh. 8 - Prob. 8.49PPCh. 8 - Prob. 8.50PPCh. 8 - Prob. 8.51PPCh. 8 - Prob. 8.52PPCh. 8 - Prob. 8.53PPCh. 8 - Identity the type of transport (passive diffusion,...Ch. 8 - Prob. 8.55APCh. 8 - Prob. 8.56APCh. 8 - Prob. 8.57APCh. 8 - Prob. 8.58APCh. 8 - Does the solubility of the solute increase or...Ch. 8 - Prob. 8.60APCh. 8 - Prob. 8.61APCh. 8 - Would you expect the concentration of oxygen in...Ch. 8 - Prob. 8.63APCh. 8 - Prob. 8.64APCh. 8 - Prob. 8.65APCh. 8 - Provide a balanced equation for the hydration of...Ch. 8 - Prob. 8.67APCh. 8 - Prob. 8.68APCh. 8 - Prob. 8.69APCh. 8 - Prob. 8.70APCh. 8 - Prob. 8.71APCh. 8 - Prob. 8.72APCh. 8 - Prob. 8.73APCh. 8 - Prob. 8.74APCh. 8 - Prob. 8.75APCh. 8 - Prob. 8.76APCh. 8 - A 750 mL bottle of wine contains 12% (v/v)...Ch. 8 - Prob. 8.78APCh. 8 - Prob. 8.79APCh. 8 - Prob. 8.80APCh. 8 - How many grams of dextrose are in 800 mL of a 5%...Ch. 8 - Prob. 8.82APCh. 8 - Prob. 8.83APCh. 8 - Prob. 8.84APCh. 8 - Prob. 8.85APCh. 8 - Prob. 8.86APCh. 8 - Prob. 8.87APCh. 8 - Prob. 8.88APCh. 8 - Prob. 8.89APCh. 8 - How would you prepare 500 mL of a 5% D5W (dextrose...Ch. 8 - Prob. 8.91APCh. 8 - Prob. 8.92APCh. 8 - Prob. 8.93APCh. 8 - Prob. 8.94APCh. 8 - Consider a cell placed in solution as shown in the...Ch. 8 - Prob. 8.96APCh. 8 - Edema, commonly referred to as water retention, is...Ch. 8 - Prob. 8.98APCh. 8 - Prob. 8.99APCh. 8 - Prob. 8.100APCh. 8 - Prob. 8.101APCh. 8 - Prob. 8.102APCh. 8 - Prob. 8.103CPCh. 8 - Prob. 8.104CPCh. 8 - Two containers of equal volume are separated by a...Ch. 8 - Proteinuria is a condition in which excessive...Ch. 8 - Prob. 8.107CPCh. 8 - Prob. 1IA.1QCh. 8 - Prob. 1IA.2QCh. 8 - Describe the appearance of the foods in (a) the...Ch. 8 - Prob. 2IA.2QCh. 8 - Prob. 2IA.3QCh. 8 - Prob. 2IA.4QCh. 8 - Which of the solutions (tap water or saltwater) is...Ch. 8 - Prob. 2IA.6QCh. 8 - If a person pours a concentrated saltwater...Ch. 8 - If a person drinks too much water too quickly, a...Ch. 8 - Prob. 1ICCh. 8 - Prob. 2ICCh. 8 - Prob. 3IC
Knowledge Booster
Similar questions
- Fluoridation of city water supplies has been practiced in the United States for several decades. It is done by continuously adding sodium fluoride to water as it comes from a reservoir. Assume you live in a medium-sized city of 150,000 people and that 660 L (170 gal) of water is used per person per day. What mass of sodium fluoride (in kilograms) must be added to the water supply each year (365 days) to have the required fluoride concentration of 1 ppm (part per million)that is, 1 kilogram of fluoride per 1 million kilograms of water? (Sodium fluoride is 45.0% fluoride, and water has a density of 1.00 g/cm3.)arrow_forwardClassify each of the following solutions as saturated, unsaturated, or supersaturated based on the following observations made after adding a small piece of solid solute to the solution. a. The added solute rapidly dissolves. b. The added solute falls to the bottom of the container where it remains without any decrease in size. c. The added solute falls to the bottom of the container where it decreases in size for several hours and thereafter its size remains constant. d. The added solute causes the production of a large amount of solid white crystals.arrow_forwardA sample of water contains 0.010 ppm lead ions, Pb2+. (a) Calculate the mass of lead ions per liter in this solution.(Assume the density of the water solution is 1.0 g/mL.) (b) Calculate the mass fraction of lead in ppb.arrow_forward
- Specifications for lactated Ringers solution, which is used for intravenous (IV) injections, are as follows to reach 100. mL of solution: 285315 mg Na+ 14.117.3 mg K+ 4.9Q.O mg Ca2+ 368408 mg Cl 231261 mg lactate, C3H5O3 a. Specify the amount of NaCl, KCl, CaCl2 2H2O, and NaC3H5O3 needed to prepare 100. mL lactated Ringers solution. b. What is the range of the osmotic pressure of the solution at 37C, given the preceding specifications?arrow_forwardThe dispersed phase of a certain colloidal dispersion consists of spheres of diameter 1.0 102 nm. (a) What are the volume (V=43r2) and surface area (A = r2) of each sphere? (b) How many spheres are required to give a total volume of 1.0 cm3? What is the total surface area of these spheres in square meters?arrow_forwardRefer to Figure 13.10 ( Sec. 13-4b) to answer these questions. (a) Does a saturated solution occur when 65.0 g LiCl is present in 100 g H2O at 40 C? Explain your answer. (b) Consider a solution that contains 95.0 g LiCl in 100 g H2O at 40 C. Is the solution unsaturated, saturated, or supersaturated? Explain your answer. (c) Consider a solution that contains 50. g Li2SO4 in 200. g H2O at 50 C. Is this solution unsaturated, saturated, or supersaturated? Explain your answer. Figure 13.10 Solubility of ionic compounds versus temperature.arrow_forward
- Refer to Figure 13.10 ( Sec. 13-4b) to determine whether these situations would result in an unsaturated, saturated, or supersaturated solution. 120. g RbCl is added to 100. g H2O at 50 °C. 30. g KCl is dissolved in 100. g H2O at 70 °C. 20. g NaCl is dissolved in 50. g H2O at 60 °C. Figure 13.10 Solubility of ionic compounds versus temperature.arrow_forwardSodium chloride (NaCl) is commonly used to melt ice on roads during the winter. Calcium chloride (CaCl2) is sometimes used for this purpose too. Let us compare the effectiveness of equal masses of these two compounds in lowering the freezing point of water, by calculating the freezing point depression of solutions containing 200. g of each salt in 1.00 kg of water. (An advantage of CaCl2 is that it acts more quickly because it is hygroscopic, that is. it absorbs moisture from the air to give a solution and begin the process. A disadvantage is that this compound is more costly.)arrow_forward6-22 Answer true or false. (a) Water is a good solvent for ionic compounds because water is a polar liquid. (b) Small covalent compounds dissolve in water if they can form hydrogen bonds with water molecules. (c) The solubility of ionic compounds in water generally increases as temperature increases. (d) The solubility of gases in liquids generally increases as temperature increases. (e) Pressure has little effect on the solubility of liquids in liquids. (f) Pressure has a major effect on the solubility of gases in liquids. (g) In general, the greater the pressure of a gas over water, the greater the solubility of the gas in water. (h) Oxygen, O2, is insoluble in water.arrow_forward
- Consider three test tubes. Tube A has pure water. Tube B has an aqueous 1.0 m solution of ethanol, C2H5OH. Tube C has an aqueous 1.0 m solution of NaCl. Which of the following statements are true? (Assume that for these solutions 1.0m=1.0M.) (a) The vapor pressure of the solvent over tube A is greater than the solvent pressure over tube B. (b) The freezing point of the solution in tube B is higher than the freezing point of the solution in tube A. (c) The freezing point of the solution in tube B is higher than the freezing point of the solution in tube C. (d) The boiling point of the solution in tube B is higher than the boiling point of the solution in tube C. (e) The osmotic pressure of the solution in tube B is greater than the osmotic pressure of the solution in tube C.arrow_forwardUsing Table 8-2, indicate whether each of the following ionic compounds is soluble or insoluble in water. a. FeSO4 b. FeCO3 c. Fe(NO3)2 d. FeCl2arrow_forward6-16 Answer true or false. (a) Solubility is a physical property like melting point and boiling point. (b) All solutions are transparent—that is, you can see through them. (c) Most solutions can be separated into their components by physical methods such as distillation and chromatography.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning