(a)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a
Elimination reactions are the reaction in which
(a)

Answer to Problem 8.46SP
The structure of an intermediate is shown in Figure 1.
The major product of the given reaction is shown in Figure 2.
Explanation of Solution
When
Figure 1
The chloride ion acts as a nucleophile that attacks on the electrophilic tertiary carbocation and results in the formation of
The major product of the given reaction is,
Figure 2
(b)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(b)

Answer to Problem 8.46SP
The structure of an intermediate is shown in Figure 3.
The major product of the given reaction is shown in Figure 4.
Explanation of Solution
When
Figure 3
Bromide ion opens the bromonium ion intermediate at the more substituted carbon atom and forms
Figure 4
(c)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(c)

Answer to Problem 8.46SP
The structure of an intermediate is shown in Figure 5.
The major product of the given reaction is shown in Figure 6.
Explanation of Solution
When
Figure 5
When
Figure 6
(d)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(d)

Answer to Problem 8.46SP
The structure of an intermediate is shown in Figure 7.
The major product of the given reaction is shown in Figure 8.
Explanation of Solution
When
Figure 7
Now, the ozonide intermediate reacts with dimethyl sulfide and forms acetaldehyde and
Figure 8
(e)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(e)

Answer to Problem 8.46SP
The major product of the given reaction is shown in Figure 9.
Explanation of Solution
When alkene reacts with
Figure 9
(f)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(f)

Answer to Problem 8.46SP
The major product of the given reaction is shown in Figure 10.
Explanation of Solution
When alkene reacts with
Figure 10
(g)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(g)

Answer to Problem 8.46SP
The major product of the given reaction is shown in Figure 11.
Explanation of Solution
When an alkene reacts with peroxyacid, it forms an
The major product of the given reaction is,
Figure 11
(h)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(h)

Answer to Problem 8.46SP
The structure of an intermediate is shown in Figure 12.
The major product of the given reaction is shown in Figure 13.
Explanation of Solution
Alkene undergoes
The structure of an intermediate is given as,
Figure 12
Now, the cyclic osmate undergoes oxidation in the presence of
Figure 13
(i)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(i)

Answer to Problem 8.46SP
The major product of the given reaction is shown in Figure 14.
Explanation of Solution
The major product of the given reaction is,
Figure 14
(j)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(j)

Answer to Problem 8.46SP
The structure of an intermediate is shown in Figure 15.
The major product of the given reaction is shown in Figure 16.
Explanation of Solution
When an alkene reacts with peroxyacid, it forms an epoxide or oxirane. Here,
The structure of an intermediate is given as,
Figure 15
The oxirane is opened at more substituted carbon atom in the presence of an acid
The major product of the given reaction is,
Figure 16
(k)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(k)

Answer to Problem 8.46SP
The major product of the given reaction is shown in Figure 17.
Explanation of Solution
Alkene undergoes oxidative cleavage in the presence of hot concentrated
The major product of the given reaction is,
Figure 17
(l)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(l)

Answer to Problem 8.46SP
The major product of the given reaction is shown in Figure 18.
Explanation of Solution
Alkene undergoes ozonolysis to form carbonyl compounds. Here,
The major product of the given reaction is,
Figure 18
(m)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(m)

Answer to Problem 8.46SP
The major product of the given reaction is shown in Figure 19.
Explanation of Solution
In this reaction,
The major product of the given reaction is,
Figure 19
(n)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(n)

Answer to Problem 8.46SP
The structure of an intermediate and the major product of the given reaction are shown in Figure 20.
Explanation of Solution
This reaction is an acid catalyzed hydration of alkene and forms
The structure of an intermediate and the major product of the given reaction is,
Figure 20
(o)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(o)

Answer to Problem 8.46SP
The major product of the given reaction is shown in Figure 21.
Explanation of Solution
The given reaction is an olefin metathesis. The major product of the given reaction is,
Figure 21
(p)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(p)

Answer to Problem 8.46SP
The structure of an intermediate is shown in Figure 22.
The major product of the given reaction is shown in Figure 24.
Explanation of Solution
Alkene reacts with mercuric acetate and forms mercurinium ion intermediate.
The structure of an intermediate is given as,
Figure 22
Now, water molecule acts as a nucleophile that opens the mercurinium ion at the most substituted carbon atom.
Figure 23
Now, organomercurial alcohol undergoes demercuration in the presence of
Figure 24
(q)
Interpretation:
The major product of the given reaction and the structure of any intermediate are to be predicted.
Concept introduction:
Substitution reactions are the reactions in which there is a replacement of an atom or a functional group by another atom or a functional group.
Elimination reactions are the reaction in which alkenes are prepared. In this two substituents are eliminated by either one step or two step mechanism.
(q)

Answer to Problem 8.46SP
The structure of an intermediate is shown in Figure 25.
The major product of the given reaction is shown in Figure 26.
Explanation of Solution
Alkene reacts with chlorine and forms chloronium ion intermediate.
The structure of an intermediate is given as,
Figure 25
Now, the water molecule acts as a nucleophile that opens the chloronium ion intermediate at more substituted carbon atom. The major product of the given reaction is,
Figure 26
Want to see more full solutions like this?
Chapter 8 Solutions
Organic Chemistry Plus Masteringchemistry With Pearson Etext, Global Edition
- For this question, if the product is racemic, input both enantiomers in the same Marvin editor. A) Input the number that corresponds to the reagent which when added to (E)-but-2-ene will result in a racemic product. Input 1 for Cl, in the cold and dark Input 2 for Oy followed by H₂O, Zn Input 3 for D₂ with metal catalyst Input 4 for H₂ with metal catalyst B) Draw the skeletal structure of the major organic product made from the reagent in part A Marvin JS Help Edit drawing C) Draw the skeletal structure of the major organic product formed when (2)-but-2-ene is treated with peroxyacetic acid. Marvin 35 Helparrow_forwardMichael Reactions 19.52 Draw the products from the following Michael addition reactions. 1. H&C CH (a) i 2. H₂O* (b) OEt (c) EtO H₂NEt (d) ΕΙΟ + 1. NaOEt 2. H₂O' H H 1. NaOEt 2. H₂O*arrow_forwardRank the labeled protons (Ha-Hd) in order of increasing acidity, starting with the least acidic. НОН НЬ OHd Онсarrow_forward
- Can the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? ? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C :0 T Add/Remove step Garrow_forwardThe following equations represent the formation of compound MX. What is the AH for the electron affinity of X (g)? X₂ (g) → 2X (g) M (s) → M (g) M (g) M (g) + e- AH = 60 kJ/mol AH = 22 kJ/mol X (g) + e-X (g) M* (g) +X (g) → MX (s) AH = 118 kJ/mol AH = ? AH = -190 kJ/mol AH = -100 kJ/mol a) -80 kJ b) -30 kJ c) -20 kJ d) 20 kJ e) 156 kJarrow_forwardA covalent bond is the result of the a) b) c) d) e) overlap of two half-filled s orbitals overlap of a half-filled s orbital and a half-filled p orbital overlap of two half-filled p orbitals along their axes parallel overlap of two half-filled parallel p orbitals all of the abovearrow_forward
- Can the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C T Add/Remove step X ноarrow_forwardWhich one of the following atoms should have the largest electron affinity? a) b) c) d) 으으 e) 1s² 2s² 2p6 3s¹ 1s² 2s² 2p5 1s² 2s² 2p 3s² 3p² 1s² 2s 2p 3s² 3p6 4s2 3ds 1s² 2s² 2p6arrow_forwardAll of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forward
- A student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forwardPredict the major products of this organic reaction:arrow_forwardCalculate the density of 21.12 g of an object that displaces 0.0250 L of water.arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning


