ELEM.PRIN.OF CHEM.PROCESS-ACCESS
ELEM.PRIN.OF CHEM.PROCESS-ACCESS
4th Edition
ISBN: 9781119099918
Author: FELDER
Publisher: WILEY
Textbook Question
Book Icon
Chapter 8, Problem 8.30P

Ever wonder why espresso costs much more per cup than regular drip coffee? Part of the reason is the expensive equipment needed to brew a proper espresso. A high-powered burr grinder first shears the coffee beans to a fine powder without producing too much heat. (Heating the coffee in the grinding stage prematurely releases the volatile oils that give espresso its rich flavor and aroma.) The ground coffee is put into a cylindrical container called a gruppa and tamped down firmly to provide an even flow of water through it. An electrically heated boiler inside the espresso machine maintains water in a reservoir at 1.4 bar and 109°C. An electric pump takes cold water at 15°C and 1 bar, raises its pressure to slightly above 9 bar, and feeds it into a heating coil that passes through the reservoir. Heat transferred from the reservoir through the coil wall raises the water temperature to 96°C. The heated water flows into the top of the gruppa at 96°C and 9 bar, passes slowly through the tightly packed ground beans, and dissolves the oils and some of the solids in the beans to become espresso, which decompresses to 1 atm as it exits the machine. The water temperature and uniform flow through the bed of packed coffee in the gruppa lead to the more intense flavor of espresso relative to normal drip coffee. Water drawn directly from the reservoir is expanded to atmospheric pressure where it forms steam, which is used to heat and froth milk for lattes and cappuccinos.

  1. Sketch this process, using blocks to represent the pump, reservoir, and gruppa. Label all heat and work flows in the process, including electrical energy.
  2. To make a 14-oz latte, you would steam 12 ounces of cold milk (3°C) until it reaches 71°C and pour it over 2 ounces of espresso. Assume that the steam cools but none of it condenses as it bubbles through the milk. For each latte made, the heating element that maintains the reservoir temperature must supply enough energy to heat the espresso water plus enough to heat the milk, plus additional energy. Assuming

   ( C P ) m i l k = 3.93 J g ° C , S G m i l k = 1.03

calculate the quantity of electrical energy that must be provided to the heating clement to accomplish those two functions. Why would more energy than what you calculate be required? (There are several reasons.)

  1. Coffee beans contain a considerable amount of trapped carbon dioxide, not all of which is released when the beans arc ground. When the hot pressurized water percolates through the ground beans, some of the carbon dioxide is absorbed in the liquid. When the liquid is then dispensed at atmospheric pressure, fine CO; bubbles come out of solution. In addition, one of the chemical compounds formed when the coffee beans are roasted and extracted into the espresso is melanoidin, a surfactant. Surfactant molecules are asymmetrical, with one end being hydrophilic (drawn to water) and the other end hydrophobic (repelled by water). When the bubbles (thin water films containing CO2) pass through the espresso liquid, the hydrophilic ends of the melanoidin molecules attach to the bubbles and the dissolved bean oils in turn attach to the hydrophobic ends. The result is that the bubbles emerge coated with the oils to form the crema, the familiar reddish- brown stable foam at the surface of good espresso. Speculate on why you don’t see crema in normal drip coffee. (Hint: Henry’s law should show up in your explanation.) Note: All soaps and shampoos contain at least one surfactant species. (A common one is sodium lauryl sulfate.) Its presence explains why if you have greasy hands, washing with plain water may leave the grease untouched but washing with soap removes the grease.
  2. Explain in your own words (i) how espresso is made, (ii) why espresso has a more intense flavor than regular drip coffee, (iii) what the crema in espresso is, how it forms, and why it doesn’t appear in regular drip coffee, and (iv) why washing with plain water does not remove grease but washing with soap does. (Note: Many people automatically assume that all chemical engineers are extraordinarily intelligent. If you can explain those four things, you can help perpetuate that belief.)

Blurred answer
04:06
Students have asked these similar questions
One suggestion for solving the fuel shortage due to decreasing volumes of fossil fuels are hydrogen / oxygen fuel cells. a. State the two half-cell reaction equations for such fuel cells. Calculate the cell potential as well as the electrical work gained by this fuel cell at standard conditions with E002/H20 = 1.229 V. b. Compare the fuel cell to the Gibbs free energy of the combustion reaction of n-octane at standard conditions. Use ASºm, n-Oct., 1 = 361.2 J/mol K.
a. Determine the electrochemical potential of the following cell using E°Mg2+/Mg = -2.362 V. Mg | Mg2+ (a=104) || H* (a = 4) | H2 (p = 0.5 bar) | Pt b. A galvanic chain consists of Co²+ / Co and Ag+ / Ag half-cells with EºCo²+/Co = -0.282 V and Eº Ag+/Ag = 0.799 V. Determine which half-cell will be reduced and which one will be oxidised. Furthermore, calculate the electrochemical potential as well as the equilibrium constant of the whole cell at i. [Co²+] = 0.1 M and [Ag+] = 0.5 M ii. [Co²+] = 0.001 M and [Ag*] = 1.5 M
The equilibrium voltage of the following cell has been measured at 0.522 V at 25 °C. Pt | H2, g❘ HClaq || AgClaq | Ags State the redox reactions present in this cell. Calculate the pH value of the electrolyte solution with KL, AgCl = 1.96 · 10-10 mol² / L². Assume that the concentrations of H+ and Clare equal.

Chapter 8 Solutions

ELEM.PRIN.OF CHEM.PROCESS-ACCESS

Ch. 8 - Chlorine gas is to be heated front 120°C and 1 atm...Ch. 8 - Prob. 8.12PCh. 8 - Prob. 8.13PCh. 8 - Prob. 8.14PCh. 8 - Use the enthalpy function of APEx to calculate...Ch. 8 - A stream of carbon monoxide flowing at 300 kg/min...Ch. 8 - Prob. 8.17PCh. 8 - Prob. 8.18PCh. 8 - Prob. 8.19PCh. 8 - Prob. 8.20PCh. 8 - Prob. 8.21PCh. 8 - Calculate the heat transfer (kJ) required to cool...Ch. 8 - Twenty liters of liquid n-propyl benzoate...Ch. 8 - Prob. 8.24PCh. 8 - Prob. 8.25PCh. 8 - Prob. 8.26PCh. 8 - A fuel gas containing 95 mole% methane and the...Ch. 8 - Prob. 8.28PCh. 8 - Prob. 8.29PCh. 8 - Ever wonder why espresso costs much more per cup...Ch. 8 - Prob. 8.31PCh. 8 - Saturated steam at 300°C is used to heat a...Ch. 8 - Pure ethane is burned completely with preheated...Ch. 8 - An adiabatic membrane separation unit is used to...Ch. 8 - A gas containing water vapor has a dry-basis...Ch. 8 - Prob. 8.36PCh. 8 - Prob. 8.37PCh. 8 - Prob. 8.38PCh. 8 - In the manufacture of nitric acid, ammonia and...Ch. 8 - A natural gas containing 95 mole% methane and the...Ch. 8 - The heat capacity at constant pressure of a gas is...Ch. 8 - Prob. 8.42PCh. 8 - Prob. 8.43PCh. 8 - Prob. 8.44PCh. 8 - Calculate the heat of vaporization of water...Ch. 8 - Polyvinylpyrrolidone (PVP) is a polymer product...Ch. 8 - Benzene vapor at 480°C is cooled and converted to...Ch. 8 - Prob. 8.48PCh. 8 - Prob. 8.49PCh. 8 - Prob. 8.50PCh. 8 - Prob. 8.51PCh. 8 - Prob. 8.52PCh. 8 - Prob. 8.53PCh. 8 - A stream of pure cyclopentane vapor flowing at a...Ch. 8 - Prob. 8.55PCh. 8 - Prob. 8.57PCh. 8 - A gas stream containing n-hexane in nitrogen with...Ch. 8 - A mixture of n-hexane vapor and air leaves a...Ch. 8 - An equimolar liquid mixture of n-pentane and...Ch. 8 - A liquid stream containing 50.0 mole% benzene and...Ch. 8 - Prob. 8.63PCh. 8 - Prob. 8.64PCh. 8 - Prob. 8.65PCh. 8 - Prob. 8.66PCh. 8 - An aqueous slurry at 30°C containing 20.0 wt%...Ch. 8 - Prob. 8.68PCh. 8 - Prob. 8.69PCh. 8 - A liquid is placed in a wcll-insulatcd container,...Ch. 8 - A small pharmaceutical firm plans to manufacture a...Ch. 8 - Freeze drying is a technique for dehydrating...Ch. 8 - The manufacturers of a new oatmeal product want to...Ch. 8 - Freeze concentration is used to produce a...Ch. 8 - A mixture containing 35.0 mole% n-butane and the...Ch. 8 - A liquid mixture of benzene and toluene containing...Ch. 8 - Prob. 8.79PCh. 8 - An outside-air sample is taken on a day when the...Ch. 8 - Prob. 8.83PCh. 8 - Prob. 8.84PCh. 8 - Prob. 8.85PCh. 8 - Wet solids pass through a continuous dryer. Hot...Ch. 8 - Prob. 8.88PCh. 8 - Prob. 8.93PCh. 8 - The heat of solution of ammonia in water at 1 atm...Ch. 8 - Prob. 8.96PCh. 8 - Sodium hydroxide is dissolved in enough water to...Ch. 8 - A sulfuric acid solution is labeled 8 N (where 1 N...Ch. 8 - You are about to dilute 2.00 mol of 100% sulfuric...Ch. 8 - Prob. 8.100PCh. 8 - A 0.1 mole% caustic soda (NaOH) solution is to be...Ch. 8 - Prob. 8.102PCh. 8 - Ortho-phosphoric acid (H3PO4) is produced as a...Ch. 8 - Prob. 8.104PCh. 8 - Fifty milliliters of 100% H2SO4 at 25°C and 84.2...Ch. 8 - Prob. 8.106PCh. 8 - One g-mole of pure liquid sulfuric acid at...Ch. 8 - Prob. 8.108PCh. 8 - Prob. 8.110PCh. 8 - Prob. 8.111PCh. 8 - Taking as references pure liquid sulfuric acid at...Ch. 8 - Prob. 8.113PCh. 8 - An NH3-H2O mixture containing 60wt% NH3 is brought...Ch. 8 - Prob. 8.115P

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Text book image
Chemical Principles in the Laboratory
Chemistry
ISBN:9781305264434
Author:Emil Slowinski, Wayne C. Wolsey, Robert Rossi
Publisher:Brooks Cole
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning