8.1. The specific internal energy of formaldehyde (HCHO) vapor at 1 atm and moderate temperatures is given by the formula
where T is in °C.
Calculate the specific internal energies of formaldehyde vapor at 0°C and 200°C. What reference temperature was used to generate the given expression for
- ?
- The value of U calculated for 200°C is not the true value of the specific internal energy of formaldehyde vapor at this condition. Why not? (Him: Refer back to Section 7.5a.) Briefly state the physical significance of the calculated quantity.
- Use the closed system energy balance to calculate the heat (J) required to raise the temperature of 3.0 mol HCHO at constant volume from 0°C to 200°C. List all of your assumptions. From the definition of heat capacity at constant volume, derive a formula for
Then use this formula and Equation 8.3-6 to calculate the heat (J) required to raise the temperature of 3.0 mol of HCHO(v) at constant volume from 0°C to 200°C. [You should get the same result you got in Part (c).]

(a)
Interpretation:
The specific internal energies of formaldehyde vapor and the temperature should be calculated.
Concept introduction:
In the thermodynamic closed system, the exchange of matter does not take place but heat can be exchanged and thus, the work done by the system is considered to be zero.
The specific internal energy of formaldehyde Vapor is given by:
Where T= temperature of formaldehyde
Answer to Problem 8.1P
Explanation of Solution
Calculate the internal energy of formaldehyde at 0 and 200° C as,
Since the reference temperature is that temperature at which internal energy becomes zero.
The reference temperature is

(b)
Interpretation:
The importance of calculated quantity should be explained.
Concept introduction:
Thermodynamic closed system in which no exchange of matter takes place but the exchange of heat occurs then the work done by the system is considered to be zero.
The specific internal energy of formaldehyde Vapor is given by:
Where T= temperature of formaldehyde
Explanation of Solution
The calculation of the absolute value of internal energy for a process material is not possible. However, it is possible to estimate the change in internal energy for a defined change of state like solid, liquid or gas.
In part (a) calculation, the change in internal energy is calculated with references to 0 °C.

(c)
Interpretation:
The heat required to raise the temperature for the given range by stating the assumptions should be calculated.
Concept introduction:
Thermodynamic closed system in which no exchange of matter takes place, but the exchange of heat occurs then the work done by the system is zero.
The specific internal energy of formaldehyde Vapor is given by:
Where T= temperature of formaldehyde
Answer to Problem 8.1P
- Work done by the system is zero.
- Potential energy drop is zero.
- Kinetic energy drop is also 0.
- No moving parts in the system.
- There is no energy transfer to and from the system
Explanation of Solution
From total energy balance,
Since the kinetic energy, potential energy and the work done are zero.
Using part (a),
Therefore, total energy for the system is,
Assumptions.
- Work done by the system is zero.
- Potential energy drop is zero.
- Kinetic energy drop is also 0.
- No moving parts in the system.
- There is no energy transfer to and from the system

(d)
Interpretation:
A formula for Cv should be derived and it should be used to calculate the heat required for the given case.
Concept introduction:
Thermodynamic closed system in which no exchange of matter takes place, but the exchange of heat occurs then the work done by the system is zero.
The specific internal energy of formaldehyde Vapor is given by:
Where T= temperature of formaldehyde
Answer to Problem 8.1P
Explanation of Solution
Use the given equation,
Differentiate both sides,
Rearranging the above equation,
At constant volume,
Apply the given values as,
Differentiate the equation as,
Finally, calculate the change of moles for the given case as,
Want to see more full solutions like this?
Chapter 8 Solutions
ELEM.PRIN.OF CHEM.PROCESS-ACCESS
Additional Engineering Textbook Solutions
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Modern Database Management
Java: An Introduction to Problem Solving and Programming (8th Edition)
Starting Out With Visual Basic (8th Edition)
Electric Circuits. (11th Edition)
Management Information Systems: Managing The Digital Firm (16th Edition)
- A well-insulated rigid tank contains 3 kg of a saturated liquid-vapor mixture of water at 200 kPa. Initially, three-quarters of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized. Determine the entropy change of the water during this process.arrow_forwardHeat in the amount of 100 kJ is transferred directly from a hot reservoir (heat source) at 1200 K to a cold reservoir (heat sink) at 600 K. Calculate the entropy change of the two reservoirs and determine if the second law of thermodynamics is satisfied.arrow_forwardThe following chemical reaction takes place at 500K and 1 atm and the products leaves at 1000K aCH4 + b(O2 + 3.76N2)=7.7CO2 + 0.5CO + 2CH4+2.95O2 + 86.85N2 + cH2O use the specific heat capacity given in Table A-21 (Moran and Shapiro, page 755) and the heat of formation given in Tabble A-25 (Moran and Shapiro, page 763) determine: 1. The stoichiometric coefficients (a, b, and c) 2. The air-fuel ratio on a molar basis 3. The air-fuel ratio on a mass basis 4. The stoichiometric air fuel ratio 5. The excess air (%) 6. The lower heating value 7. The rate of heat transfer from the combustion chamber.arrow_forward
- 3. Nitric oxide is produced in the body by several different enzymes and acts as a signal that controls blood pressure, long-term memory, and other critical functions. The major route for removing NO from biological fluids is via reaction with O2 to give NO₂ 2NO(g) + O2(g) → 2NO2(g) The following table lists kinetics data for the reaction of NO with O2 at 25°C: Experiment 1 [NO] (M) 0.0235 2 0.0235 3 0.0470 4 0.0470 (a) Determine the rate law for the reaction (b) calculate the rate constant. [02]0 (M) Initial Rate (M/s) 0.0125 7.98 × 10-3 0.0250 15.9 × 10-3 0.0125 32.0 × 10-3 0.0250 63.5 x 10-3 5:32arrow_forwardA closed system of 122 moles of an ideal gas with constant-pressure heat capacity of cp = 2.5R expands isobarically from 52°C and 4.9 bar to 137°C, with a thermodynamic efficiency of 0.74. How much total work is involved in this process? Please report your answer to the nearest whole kJ and don't forget the sign: "-" if the work is negative, no sign if the work is positive.arrow_forwardLiquid toluene at 20°C is reversibly and isothermally compressed from 2.94 bar to 7.7 bar. What is the specific work, in J/kg, required to accomplish this? Some properties of liquid toluene at 20°C: β = 1.05 x 10-3 ºC-1 , κ = 8.96 x 10-5 bar-1 , V = 1154 cm3 kg-1. Please report your answer to 3 SF. Be very, very careful of units!arrow_forward
- 132 kJ of work is transferred from a system to its surroundings in a reversible process to get it from state A to state B. If a similar but irreversible process is performed from state A to state B with a thermodynamic efficiency of 0.73, how much work will be transferred, in kJ? Be sure to include the correct sign on your answer: if it is positive, do NOT include a "+", but if it is negative you MUST include a "−" sign.arrow_forward2- What will be the power required to crush 150 tonnes per hour of limestone if 80 percent of the feed passes 50 mm screen and 80 percent of the product a 3.125 mm screen? Work index of limestone 12.74.arrow_forward3- A certain crusher accepts a feed material having a volume-surface mean diameter of 19 mm and gives a product of volume-surface mean diameter of 5 mm. The power required to crush 15 tonnes per hour is 7.5 kW. What will be the power consumption if the capacity is reduced to 12 tonnes per hour?arrow_forward
- CR = CAOK1 K2-K1 - Cs CAO CR - CA = [e-k₁t + e-k₂t] --(6) Cs = Cao CAO 1+ K₂e-kit K₁e-k2t + K1-K2 K₂-K1 By differentiating eq (6) and set to zero (dCR = 0), the time at which concentration of R occurs is thus: dT K2 1 In Ki K1 tmax K₂-K1 Klogmean (7) Equation 7. Prove that?arrow_forwardQuestion #6 a) Draw a simple block flow diagram of a petroleum refinery consisting of following sections. 1. Atmospheric and vacuum distillation 2. Hydrotreating of diesel steam 3. Hydrocracking of LVGO Show main product streams from each unit. (8)arrow_forwardPhosphate often needs to be removed from wastewater because it will cause eutrophication of receiving waters. At the Paso Robles Wastewater Treatment plant, they add MgCl2 to the pressate (concentrated liquid pressed from sludge) to precipitate phosphate as the mineral struvite. Struvite is formed by the reaction of phosphate with magnesium ions and ammonium, and the solubility product for struvite is 5.5x10-14. The ammonium concentration is very high at 300 mg N-NH4/L because the sludge is coming from an anaerobic digester. What minimum amount of MgCl2 (in mg/L) would be needed to precipitate all but 1 mg/L phosphate? Struvite precipitates by the following reaction: Mg++NH] +PO →MgNH PO 4 4 4arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The





