(a)
Find the magnitude of the force P requires to move the cabinet to the right if all casters are locked.
(a)
Answer to Problem 8.136RP
The magnitude of the force P required is
Explanation of Solution
Given information:
The weight of the cabinet is
The coefficient of static friction between the floor and the caster is
The height at which the force P is acting from the bottom is
Calculation:
Show the free-body diagram of the cabinet as in Figure 1.
For tipping;
Find the tipping force P by taking moment about point B.
Find the friction force
Find the friction force
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Substitute 0.30 for
Here,
Therefore, the magnitude of the force P required is
(b)
Find the magnitude of the force P requires to move the cabinet to the right if the casters at B are locked and at A is free.
(b)
Answer to Problem 8.136RP
The magnitude of the required force P is
Explanation of Solution
Given information:
The weight of the cabinet is
The coefficient of static friction between the floor and the caster is
The height at which the force P is acting from the bottom is
Calculation:
Refer to Figure 1;
Find the friction force
Find the friction force
Resolve the horizontal component of forces.
Find the magnitude of the force P by taking moment about point A.
Substitute 0.30 for
Here,
Therefore, the magnitude of the force P required is
(c)
Find the magnitude of the force P requires to move the cabinet to the right if the casters at A are locked and at B is free.
(c)
Answer to Problem 8.136RP
The magnitude of the force P required is
Explanation of Solution
Given information:
The weight of the cabinet is
The coefficient of static friction between the floor and the caster is
The height at which the force P is acting from the bottom is
Calculation:
Refer to Figure 1;
Find the friction force
Find the friction force
Resolve the horizontal component of forces.
Find the magnitude of the force P by taking moment about point A.
Substitute 0.30 for
Here,
Therefore, the magnitude of the force P required is
Want to see more full solutions like this?
Chapter 8 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
- Need helparrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forwardProblem 1 8 in. in. PROBLEM 15.109 Knowing that at the instant shown crank BC has a constant angular velocity of 45 rpm clockwise, determine the acceleration (a) of Point A, (b) of Point D. 8 in. Answer: convert rpm to rad/sec first. (a). -51.2j in/s²; (b). 176.6 i + 50.8 j in/s²arrow_forward
- Problem 4 The semicircular disk has a radius of 0.4 m. At one instant, when 0-60°, it is rotating counterclockwise at 0-4 rad/s, which is increasing in the same direction at 1 rad/s². Find the velocity and acceleration of point B at this instant. (Suggestion: Set up relative velocity and relative acceleration that way you would for a no-slip disk; remember what I told you to memorize on the first day of class.) (Answer: B = −2.98î - 0.8ĵ m/s, ãB = 2.45î - 5.74ĵ m/s²) B 0.4 m y Xarrow_forwardA C C 2r A 2r B B (a) (b) Problem 3 Refer to (b) of the figure shown above. The disk OA is now rolling with no slip at a constant angular velocity of w. Find the angular velocity and angular acceleration of link AB and BC. (Partial Answers: WBC = 2wk, AB = w²k)arrow_forwardProblem 2 Refer to (a) of the figure shown below, where the disk OA rotates at a constant angular velocity of w. Find the angular velocity and angular acceleration of link AB and link BC. (Partial Answers: WBC = wk, AB = w²k) A 2r C B (a) A 2r B (b)arrow_forward
- Example Two rotating rods are connected by slider block P. The rod attached at A rotates with a constant clockwise angular velocity WA. For the given data, determine for the position shown (a) the angular velocity of the rod attached at B, (b) the relative velocity of slider block P with respect to the rod on which it slides. b = 8 in., w₁ = 6 rad/s. Given: b = 8 in., WA = 6 rad/s CW constant Find: (a). WBE (b). Vp/Frame E 60° 20° Barrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward100 As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the spring constant at time t is k(t) = t sin + N/m. If the mass-spring system has mass m = 2 kg and a damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is subjected to the harmonic external force f (t) = 100 cos 3t N. Find at least the first four nonzero terms in a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement: • Analytically (hand calculations) Creating Simulink Model Plot solutions for first two, three and four non-zero terms as well as the Simulink solution on the same graph for the first 15 sec. The graph must be fully formatted by code.arrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L