
(a)
Interpretation:
The two expressions for Doppler broadening and Doppler half-width needs to be shown equivalent to each other.
Concept introduction:
The equation for the half-width for Doppler broadening Δλ0 of an atomic line can be used to study line broadening in a low − pressure laser-induced plasma.

Explanation of Solution
The change in wavelength at the center of the emission line can be represented as follows:
Here,
Similarly, the Doppler half-width can be calculated as follows:
Here,
Also,
(b)
Interpretation:
The half-width for Doppler broadening needs to be determined for 4s to 4p transition for nickel atom.
Concept introduction:
Doppler bordering is happened due to the Doppler effect caused by a distribution of velocities of atomic molecules.

Answer to Problem 8.12QAP
The half-width = 7934 nm and
Explanation of Solution
Given information:
Calculation:
The Doppler half-width can be calculated as follows:
(c)
Interpretation:
The natural line width for the above transition needs to be determined, assuming that the lifetime of the excited state is
Concept introduction:
Natural line width is associated with the decay time (Natural life-time) and it is a minimum line width that does not contain effects such as collisional and Doppler broadening.

Answer to Problem 8.12QAP
Natural line width =
Explanation of Solution
Natural line width can be calculated as follows:
Putting the values,
(d)
Interpretation:
To show that the relativistic expression is consistent with the mentioned equation given for the low atomic speeds.
Concept introduction:
When compared with the

Explanation of Solution
When the atomic speed very low V is considerably small when compared to the c, that of the speed of light. Hence the above mentioned equation could be written as shown below. Hence, at low velocities, relativistic kinetic energy reduces to classical kinetic energy. No object with mass can achieve the speed of light because an infinite amount of energy input and an infinite amount of work is required to accelerate a mass to the speed of light.
(e)
Interpretation:
The speed of an iron atom the 4s to 4p transition at 385.9911 nm should be determined.
Concept introduction:
The rest wavelength of Nickel is 410 nm. The formula used is:

Answer to Problem 8.12QAP
Explanation of Solution
Given information:
Calculation:
(f)
Interpretation:
The fraction of a sample of iron atoms at 10,000 K that would have the velocity calculated in part e should be computed.
Concept introduction:
Natural line width is associated with the decay time. It is a minimum line width that does not contain effects such as collisional and Doppler broadening.

Answer to Problem 8.12QAP
Explanation of Solution
Given information:
Calculation:
(g)
Interpretation:
A spreadsheet should be created to calculate the Doppler half-width
Concept introduction:
Doppler bordering is happened due to the Doppler effect caused by a distribution of velocities of atomic molecules.

Answer to Problem 8.12QAP
Refer the spreadsheet
Explanation of Solution
Given information:
Calculation:
(h)
Interpretation:
The four sources of pressure broadening should be listed by consulting the paper by Gornushkin et al. (note 10).

Explanation of Solution
The interaction of the surrounding particles with the radiating atom is the major source of pressure line broadening, which causes a phase shift and a frequency disturbance.
The most important cases of interaction are:
- linear Starkeffect, p = 2;
- resonance interaction between identical particles, p = 3;
- quadratic Stark effect, p = 4,
- van der Waals interaction, p = 6.
The superposition problems are avoided by two approximations:
- ‘nearest neighbor approximation’, in this the considered interaction is interaction with the closest perturber.
- The impact or collision concept, in which moving perturbers act sequentially in time.
Want to see more full solutions like this?
Chapter 8 Solutions
Principles of Instrumental Analysis
- When an unknown amine reacts with an unknown acid chloride, an amide with a molecular mass of 163 g/mol (M* = 163 m/z) is formed. In the infrared spectrum, important absorptions appear at 1661, 750 and 690 cm. The 13C NMR and DEPT spectra are provided. Draw the structure of the product as the resonance contributor lacking any formal charges. 13C NMR DEPT 90 200 160 120 80 40 0 200 160 120 80 40 0 DEPT 135 T 200 160 120 80 40 0 Draw the unknown amide. Select Dow Templates More Fragearrow_forwardIdentify the unknown compound from its IR and proton NMR spectra. C4H6O: 'H NMR: 82.43 (1H, t, J = 2 Hz); 8 3.41 (3H, s); 8 4.10 (2H, d, J = 2 Hz) IR: 2125, 3300 cm¹ The C4H6O compound liberates a gas when treated with C2H5 MgBr. Draw the unknown compound. Select Draw с H Templates Morearrow_forwardPlease help with number 6 I got a negative number could that be right?arrow_forward
- 1,4-Dimethyl-1,3-cyclohexadiene can undergo 1,2- or 1,4-addition with hydrogen halides. (a) 1,2-Addition i. Draw the carbocation intermediate(s) formed during the 1,2-addition of hydrobromic acid to 1,4-dimethyl-1,3-cyclohexadiene. ii. What is the major 1,2-addition product formed during the reaction in (i)? (b) 1,4-Addition i. Draw the carbocation intermediate(s) formed during the 1,4-addition of hydrobromic acid to 1,4-dimethyl-1,3-cyclohexadiene. ii. What is the major 1,4-addition product formed from the reaction in (i)? (c) What is the kinetic product from the reaction of one mole of hydrobromic acid with 1,4-dimethyl-1,3-cyclohexadiene? Explain your reasoning. (d) What is the thermodynamic product from the reaction of one mole of hydrobro-mic acid with 1,4-dimethyl-1,3-cyclohexadiene? Explain your reasoning. (e) What major product will result when 1,4-dimethyl-1,3-cyclohexadiene is treated with one mole of hydrobromic acid at - 78 deg * C ? Explain your reasoning.arrow_forwardGive the product of the bimolecular elimination from each of the isomeric halogenated compounds. Reaction A Reaction B. КОВ CH₂ HotBu +B+ ко HOIBU +Br+ Templates More QQQ Select Cv Templates More Cras QQQ One of these compounds undergoes elimination 50x faster than the other. Which one and why? Reaction A because the conformation needed for elimination places the phenyl groups and to each other Reaction A because the conformation needed for elimination places the phenyl groups gauche to each other. ◇ Reaction B because the conformation needed for elimination places the phenyl groups gach to each other. Reaction B because the conformation needed for elimination places the phenyl groups anti to each other.arrow_forwardFive isomeric alkenes. A through each undergo catalytic hydrogenation to give 2-methylpentane The IR spectra of these five alkenes have the key absorptions (in cm Compound Compound A –912. (§), 994 (5), 1643 (%), 3077 (1) Compound B 833 (3), 1667 (W), 3050 (weak shoulder on C-Habsorption) Compound C Compound D) –714 (5), 1665 (w), 3010 (m) 885 (3), 1650 (m), 3086 (m) 967 (5), no aharption 1600 to 1700, 3040 (m) Compound K Match each compound to the data presented. Compound A Compound B Compound C Compound D Compoundarrow_forward
- 7. The three sets of replicate results below were accumulated for the analysis of the same sample. Pool these data to obtain the most efficient estimate of the mean analyte content and the standard deviation. Lead content/ppm: Set 1 Set 2 Set 3 1. 9.76 9.87 9.85 2. 9.42 9.64 9.91 3. 9.53 9.71 9.42 9.81 9.49arrow_forwardDraw the Zaitsev product famed when 2,3-dimethylpentan-3-of undergoes an El dehydration. CH₂ E1 OH H₁PO₁ Select Draw Templates More QQQ +H₂Oarrow_forwardComplete the clean-pushing mechanism for the given ether synthesia from propanol in concentrated sulfurica140°C by adding any mining aloms, bands, charges, nonbonding electron pairs, and curved arrows. Draw hydrogen bonded to cayan, when applicable. ore 11,0 HPC Step 1: Draw curved arrows Step 2: Complete the intend carved Q2Q 56 QQQ Step 3: Complete the intermediate and add curved Step 4: Modify the structures to draw the QQQ QQQarrow_forward
- 6. In an experiment the following replicate set of volume measurements (cm3) was recorded: (25.35, 25.80, 25.28, 25.50, 25.45, 25.43) A. Calculate the mean of the raw data. B. Using the rejection quotient (Q-test) reject any questionable results. C. Recalculate the mean and compare it with the value obtained in 2(a).arrow_forwardA student proposes the transformation below in one step of an organic synthesis. There may be one or more reactants missing from the left-hand side, but there are no products missing from the right-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. • If the student's transformation is possible, then complete the reaction by adding any missing reactants to the left-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. + T G OH де OH This transformation can't be done in one step.arrow_forwardMacmillan Leaming Draw the major organic product of the reaction. 1. CH3CH2MgBr 2. H+ - G Select Draw Templates More H о QQarrow_forward
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning

