EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100460300
Author: SERWAY
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 8.10CQ
In Chapter 7, the work-kinetic energy theorem, W = ΔK, was introduced. This equation states that work done on a system appears as a change in kinetic energy. It is a special-case equation, valid if there are no changes in any other type of energy such as potential or internal. Give two or three examples in which work is done on a system but the change in energy of the system is not a change in kinetic energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 8 - By what transfer mechanisms does energy enter and...Ch. 8 - Consider a block sliding over a horizontal surface...Ch. 8 - A rock of mass m is dropped to the ground from a...Ch. 8 - Three identical balls are thrown from the top of a...Ch. 8 - You are traveling along a freeway at 65 mi/h. Your...Ch. 8 - You hold a slingshot at arms length, pull the...Ch. 8 - Two children stand on a platform at the top of a...Ch. 8 - At the bottom of an air track tilted at angle , a...Ch. 8 - An athlete jumping vertically on a trampoline...Ch. 8 - Answer yes or no to each of the following...
Ch. 8 - In a laboratory model of cars skidding to a stop,...Ch. 8 - What average power is generated by a 70.0-kg...Ch. 8 - A ball of clay falls freely to the hard floor. It...Ch. 8 - A pile driver drives posts into the ground by...Ch. 8 - One person drops a ball from the top of a building...Ch. 8 - A car salesperson claims that a 300-hp engine is a...Ch. 8 - Prob. 8.3CQCh. 8 - Prob. 8.4CQCh. 8 - Prob. 8.5CQCh. 8 - Prob. 8.6CQCh. 8 - In the general conservation of energy equation,...Ch. 8 - Consider the energy transfers and transformations...Ch. 8 - A block is connected to a spring that is suspended...Ch. 8 - In Chapter 7, the work-kinetic energy theorem, W =...Ch. 8 - For each of the following systems and time...Ch. 8 - Prob. 8.2PCh. 8 - A block of mass 0.250 kg is placed on top of a...Ch. 8 - A 20.0-kg cannonball is fired from a cannon with...Ch. 8 - cal energy of the ballEarth sys-tem at the maximum...Ch. 8 - A block of mass m = 5.00 kg is released from point...Ch. 8 - Two objects are connected by a light string...Ch. 8 - Prob. 8.8PCh. 8 - A light, rigid rod is 77.0 cm long. Its top end is...Ch. 8 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 8 - Prob. 8.11PCh. 8 - A sled of mass m is given a kick on a frozen pond....Ch. 8 - A sled of mass m is given a kick on a frozen pond....Ch. 8 - A crate of mass 10.0 kg is pulled up a rough...Ch. 8 - A block of mass m = 2.(K) kg is attached to a...Ch. 8 - A 40.0-kg box initially at rest is pushed 5.00 m...Ch. 8 - A smooth circular hoop with a radius of 0.500 m is...Ch. 8 - At time ti, the kinetic energy of a particle is...Ch. 8 - A boy in a wheelchair (total mass 47.0 kg) has...Ch. 8 - As shown in Figure P8.10, a green bead of mass 25...Ch. 8 - A toy cannon uses a spring to project a 5.30-g...Ch. 8 - The coefficient of friction between the block of...Ch. 8 - A 5.00-kg block is set into motion up an inclined...Ch. 8 - A 1.50-kg object is held 1.20 m above a relaxed...Ch. 8 - A 200-g block is pressed against a spring of force...Ch. 8 - An 80.0-kg skydiver jumps out of a balloon at an...Ch. 8 - Prob. 8.27PCh. 8 - Sewage at a certain pumping station is raised...Ch. 8 - An 820-N Marine in basic training climbs a 12.0-m...Ch. 8 - The electric motor of a model train accelerates...Ch. 8 - When an automobile moves with constant speed down...Ch. 8 - Prob. 8.32PCh. 8 - An energy-efficient lightbulb, taking in 28.0 W of...Ch. 8 - An electric scooter has a battery capable of...Ch. 8 - Make an order-of-magnitude estimate of the power a...Ch. 8 - An older-model car accelerates from 0 to speed v...Ch. 8 - For saving energy, bicycling and walking are far...Ch. 8 - A 650-kg elevator starts from rest. It moves...Ch. 8 - Prob. 8.39PCh. 8 - Energy is conventionally measured in Calories as...Ch. 8 - A loaded ore car has a mass of 950 kg and rolls on...Ch. 8 - Make an order-of-magnitude estimate of your power...Ch. 8 - A small block of mass m = 200 g is released from...Ch. 8 - Prob. 8.44APCh. 8 - Review. A boy starts at rest and slides down a...Ch. 8 - Review. As shown in Figure P8.26, a light string...Ch. 8 - A 4.00-kg particle moves along the x axis. Its...Ch. 8 - Why is the following situation impossible? A...Ch. 8 - A skateboarder with his board can be modeled as a...Ch. 8 - Heedless of danger, a child leaps onto a pile of...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Consider the blockspringsurface system in part (B)...Ch. 8 - As it plows a parking lot, a snowplow pushes an...Ch. 8 - Prob. 8.55APCh. 8 - Prob. 8.56APCh. 8 - As the driver steps on the gas pedal, a car of...Ch. 8 - Review. Why is the following situation impossible?...Ch. 8 - A horizontal spring attached to a wall has a force...Ch. 8 - More than 2 300 years ago, the Greek teacher...Ch. 8 - A child's pogo stick (Fig. P8.61) stores energy in...Ch. 8 - A 1.00-kg object slides to the right on a surface...Ch. 8 - A 10.0-kg block is released from rest at point in...Ch. 8 - Prob. 8.64APCh. 8 - A block of mass 0.500 kg is pushed against a...Ch. 8 - Review. As a prank, someone has balanced a pumpkin...Ch. 8 - Review. The mass of a car is 1 500 kg. The shape...Ch. 8 - A pendulum, comprising a light string of length L...Ch. 8 - A block of mass M rests on a table. It is fastened...Ch. 8 - Review. Why is the following situation impossible?...Ch. 8 - While running, a person transforms about 0.600 J...Ch. 8 - A roller-coaster car shown in Figure P8.72 is...Ch. 8 - A ball whirls around in a vertical circle at the...Ch. 8 - An airplane of mass 1.50 104 kg is in level...Ch. 8 - Prob. 8.75APCh. 8 - In bicycling for aerobic exercise, a woman wants...Ch. 8 - Review. In 1887 in Bridgeport, Connecticut, C. J....Ch. 8 - Prob. 8.78APCh. 8 - Review. A uniform board of length L is sliding...Ch. 8 - Starting from rest, a 64.0-kg person bungee jumps...Ch. 8 - Prob. 8.81CPCh. 8 - Prob. 8.82CPCh. 8 - What If? Consider the roller coaster described in...Ch. 8 - A uniform chain of length 8.00 m initially lies...Ch. 8 - Prob. 8.85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) A force F=(4xi+3yj), where F is in newtons and x and y are in meters, acts on an object as the object moves in the x direction from the origin to x = 5.00 m. Find the work W=Fdr done by the force on the object. (b) What If? Find the work W=Fdr done by the force on the object if it moves from the origin to (5.00 m, 5.00 m) along a straightline path making an angle of 45.0 with the positive x axis. Is the work done by this force dependent on the path taken between the initial and final points?arrow_forwardExplorers in the jungle find an ancient monument in the shape of a large isosceles triangle as shown in Figure P9.25. The monument is made from tens of thousands of small stone blocks of density 3 800 kg/m3. The monument is 15.7 m high and 64.8 m wide at its base and is everywhere 3.60 m thick from front to back. Before the monument was built many years ago, all the stone blocks lay on the ground. How much work did laborers do on the blocks to put them in position while building the entire monument? Note: The gravitational potential energy of an objectEarth system is given by Ug = MgyCM, where M is the total mass of the object and yCM is the elevation of its center of mass above the chosen reference level.arrow_forward. In the annual Empire State Building race, contestants run up 1,575 steps to a height of 1,050 ft. In 2003, Australian Paul Crake completed the race in a record time of 9 min and 33 S, Mr., Crake weighed 143 lb (65 kg) , (a) How much work did Mr., Crake do in reaching the top of the building? (b) What was his average power output (in ft-lb/s and in hp)?arrow_forward
- A particle moves in the xy plane (Fig. P9.30) from the origin to a point having coordinates x = 7.00 m and y = 4.00 m under the influence of a force given by F=3y2+x. a. What is the work done on the particle by the force F if it moves along path 1 (shown in red)? b. What is the work done on the particle by the force F if it moves along path 2 (shown in blue)? c. What is the work done on the particle by the force F if it moves along path 3 (shown in green)? d. Is the force F conservative or nonconservative? Explain. FIGURE P9.30 In each case, the work is found using the integral of Fdr along the path (Equation 9.21). W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz) (a) The work done along path 1, we first need to integrate along dr=dxi from (0,0) to (7,0) and then along dr=dyj from (7,0) to (7,4): W1=x=0;y=0x=7;y=0(3y2i+xj)(dxi)+x=7;y=0x=7;y=4(3y2i+xj)(dyj) Performing the dot products, we get W1=x=0;y=0x=7;y=03y2dx+x=7;y=0x=7;y=4xdy Along the first part of this path, y = 0 therefore the first integral equals zero. For the second integral, x is constant and can be pulled out of the integral, and we can evaluate dy. W1=0+x=7;y=0x=7;y=4xdy=xy|x=7;y=0x=7;y=4=28J (b) The work done along path 2 is along dr=dyj from (0,0) to (0,4) and then along dr=dxi from (0,4) to (7,4): W2=x=0;y=0x=0;y=4(3y2i+xj)(dyj)+x=0;y=4x=7;y=4(3y2i+xj)(dyi) Performing the dot product, we get: W2=x=0;y=0x=0;y=4xdy+x=0;y=4x=7;y=43y2dx Along the first part of this path, x = 0. Therefore, the first integral equals zero. For the second integral, y is constant and can be pulled out of the integral, and we can evaluate dx. W2=0+3y2x|x=0;y=4x=7;y=4=336J (c) To find the work along the third path, we first write the expression for the work integral. W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz)W=rtrf(3y2dx+xdy)(1) At first glance, this appears quite simple, but we cant integrate xdy=xy like we might have above because the value of x changes as we vary y (i.e., x is a function of y.) [In parts (a) and (b), on a straight horizontal or vertical line, only x or y changes]. One approach is to parameterize both x and y as a function of another variable, say t, and write each integral in terms of only x or y. Constraining dr to be along the desired line, we can relate dx and dy: tan=dydxdy=tandxanddx=dytan(2) Now, use equation (2) in (1) to express each integral in terms of only one variable. W=x=0;y=0x=7;y=43y2dx+x=0;y=0x=7;y=4xdyW=y=0y=43y2dytan+x=0x=7xtandx We can determine the tangent of the angle, which is constant (the angle is the angle of the line with respect to the horizontal). tan=4.007.00=0.570 Insert the value of the tangent and solve the integrals. W=30.570y33|y=0y=4+0.570x22|x=0x=7W=112+14=126J (d) Since the work done is not path-independent, this is non-conservative force. Figure P9.30ANSarrow_forwardA nonconstant force is exerted on a particle as it moves in the positive direction along the x axis. Figure P9.26 shows a graph of this force Fx versus the particles position x. Find the work done by this force on the particle as the particle moves as follows. a. From xi = 0 to xf = 10.0 m b. From xi = 10.0 to xf = 20.0 m c. From xi = 0 to xf = 20.0 m FIGURE P9.26 Problems 26 and 27.arrow_forwardA shopper pushes a grocery cart 20.0 m at constant speed on level ground, against a 35.0 N frictional force. He pushes in a direction 25.0° below the horizontal. (a) What is the work done on the cart by friction? (b) What is the work done on the cart by the gravitational force? (c) What is the work done on the cart by the shopper? (d) Find the force the shopper exerts, using energy considerations. (e) What is the total work done on the cart?arrow_forward
- A sled of mass 70 kg starts from rest and slides down a 10 incline 80 m long. It then travels for 20 m horizontally before starting back up an 8° incline. It travels 80 m along this incline before coming to rest. What is the magnitude of the net work done on the sled by friction?arrow_forwardGive an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does no work.arrow_forwardA block of mass m = 2.50 kg is pushed a distance d = 2.20 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0 N directed at an angle = 25.0 below the horizontal as shown in Figure P6.3. Determine the work done on the block by (a) the applied force, (b) the normal force exerted by the table, (c) the gravitational force, and (d) the net force on the block. Figure P6.3arrow_forward
- As a simple pendulum swings back and forth, the forces acting on the suspended object are the force of gravity, the tension in the supporting cord, and air resistance, (a) Which of these forces, if any, does no work on the pendulum? (b) Which of these forces does negative work at all times during the pendulums motion? (c) Describe the work done by the force of gravity while the pendulum is swinging.arrow_forwardThe force acting on a particle is Fx = (8x 16), where F is in newtons anti x is in meters. (a) Make a plot of this force versus x from x = 0 to x = 3.00 m. (b) From your graph, find the net work done by this force on the particle as it moves from x = 0 to x = 3.00 m.arrow_forwardConsider the energy transfers and transformations listed below in parts (a) through (e). For each part, (i) describe human-made devices designed to produce each of the energy transfers or transformations and, (ii) whenever possible, describe a natural process in which the energy transfer or transformation occurs. Give details to defend your choices, such as identifying the system and identifying other output energy if the device or natural process has limited efficiency. (a) Chemical potential energy transforms into internal energy. (b) Energy transferred by electrical transmission becomes gravitational potential energy. (c) Elastic potential energy transfers out of a system by heat. (d) Energy transferred by mechanical waves does work on a system. (e) Energy carried by electromagnetic waves becomes kinetic energy in a system.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY