Concept explainers
(a)
The expression for
(a)

Answer to Problem 8.82CP
The expression for
Explanation of Solution
Given info: The length of the string is
The diagram is shown below.
Figure I
The formula to calculate the horizontal displacement is,
Here,
The formula to calculate the work done by the wind force is,
Here,
Substitute
The formula to calculate the gravitational potential energy of the ball is,
Here,
From the law of conservation of energy,
Here,
Substitute
Square the above expression on both sides to find
Substitute
Conclusion:
Therefore, the expression for
(b)
The value of
(b)

Answer to Problem 8.82CP
The value of
Explanation of Solution
Given info: The length of the string is
From part (a), the expression for
Substitute
Conclusion:
Therefore, the value of
(c)
The value of
(c)

Answer to Problem 8.82CP
The value of
Explanation of Solution
Given info: The length of the string is
From part (a), the expression for
Substitute
Conclusion:
Therefore, the value of
(d)
The value of
(d)

Answer to Problem 8.82CP
The value of
Explanation of Solution
Given info: The length of the string is
From part (a), the expression for
In the above expression, the height of the ball is directly proportional to the square of the magnitude of force as the force increases then the height of the ball also increases but in the given case, the value of force is approach to zero then the height of the ball also approach to zero.
Conclusion:
Therefore, the value of
(e)
The value of
(e)

Answer to Problem 8.82CP
The value of
Explanation of Solution
Given info: The length of the string is
From part (a), the expression for
Substitute
Conclusion:
Therefore, the value of
(f)
The equilibrium height of the ball as a function of
(f)

Answer to Problem 8.82CP
The equilibrium height of the ball as a function of
Explanation of Solution
Given info: The length of the string is
The given diagram is shown below.
Figure II
The diagram is shown below.
Figure III
From the figure the equilibrium height of the ball is,
Here,
From the figure II,
Substitute
Substitute
Conclusion:
Therefore, the equilibrium height of the ball as a function of
(g)
The value of equilibrium height of the ball
(g)

Answer to Problem 8.82CP
The value of equilibrium height of the ball
Explanation of Solution
Given info: The length of the string is
From part (a), the expression for equivalent height of the ball in terms of
Substitute
Conclusion:
Therefore, the value of equilibrium height of the ball
(h)
The value of equilibrium height of the ball
(h)

Answer to Problem 8.82CP
The value of equilibrium height of the ball
Explanation of Solution
Given info: The length of the string is
From part (a), the expression for equivalent height of the ball in terms of
Substitute
Conclusion:
Therefore, the value of equilibrium height of the ball
Want to see more full solutions like this?
Chapter 8 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forward
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





