ORGANIC CHEMISTRY GGC>CUSTOM<-TEXT
ORGANIC CHEMISTRY GGC>CUSTOM<-TEXT
2nd Edition
ISBN: 9781119288510
Author: Klein
Publisher: WILEY
Question
Book Icon
Chapter 8, Problem 79IP

(a)

Interpretation Introduction

Interpretation:

Major products should be drawn for the given elimination reactions.

Concept introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile)
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

 (b)

Interpretation Introduction

Interpretation:

Major products should be drawn for the given elimination reactions.

Concept introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile)
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(c)

Interpretation Introduction

Interpretation:

Major products should be drawn for the given elimination reactions.

Concept introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile)
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(d)

Interpretation Introduction

Interpretation:

Major products should be drawn for the given elimination reactions.

Concept introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile)
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

 (e)

Interpretation Introduction

Interpretation:

Major products should be drawn for the given elimination reactions.

Concept introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile)
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(f)

Interpretation Introduction

Interpretation:

Major products should be drawn for the given elimination reactions.

Concept introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile)
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(g)

Interpretation Introduction

Interpretation:

Major products should be drawn for the given elimination reactions.

Concept introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile)
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(h)

Interpretation Introduction

Interpretation:

Major products should be drawn for the given elimination reactions.

Concept introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile)
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

 (i)

Interpretation Introduction

Interpretation:

Major products should be drawn for the given elimination reactions.

Concept introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile)
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(j)

Interpretation Introduction

Interpretation:

Major products should be drawn for the given elimination reactions.

Concept introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile)
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

Blurred answer
Students have asked these similar questions
(a 4 shows scanning electron microscope (SEM) images of extruded actions of packing bed for two capillary columns of different diameters, al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the same stationary phase, spherical particles with 1-um diameter. A) When the columns were prepared, the figure shows that the column with the larger diameter has more packing irregularities. Explain this observation. B) Predict what affect this should have on band broadening and discuss your prediction using the van Deemter terms. C) Does this figure support your explanations in application question 33? Explain why or why not and make any changes in your answers in light of this figure. Figure 4 SEM images of sections of packed columns for a) 750 and b) 30-um-i.d. capillary columns.³
fcrip = ↓ bandwidth Il temp 32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual components of the van Deemter equation and consequently, band broadening? Increase temperature Longer column Using a gas mobile phase instead of liquid Smaller particle stationary phase Multiple Paths Diffusion Mass Transfer
34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.). A) Predict whether decreasing the column inner diameters increase or decrease bandwidth. B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or decreasing bandwidth as a function of i.d. and justify your answer. Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles. 35 20 H(um) 큰 20 15 90 0+ 1500 100 75 550 01 02 594 05 μ(cm/sec) 30 15 10

Chapter 8 Solutions

ORGANIC CHEMISTRY GGC>CUSTOM<-TEXT

Ch. 8.5 - Prob. 8PTSCh. 8.6 - Prob. 4LTSCh. 8.6 - Prob. 9PTSCh. 8.6 - Prob. 10PTSCh. 8.6 - Prob. 11ATSCh. 8.6 - Prob. 12ATSCh. 8.7 - Prob. 13CCCh. 8.7 - Prob. 14CCCh. 8.7 - Prob. 5LTSCh. 8.7 - Prob. 15PTSCh. 8.7 - Prob. 16ATSCh. 8.7 - Prob. 17ATSCh. 8.7 - Prob. 6LTSCh. 8.7 - Prob. 18PTSCh. 8.7 - Prob. 19ATSCh. 8.7 - Prob. 20CCCh. 8.7 - Prob. 21CCCh. 8.8 - Prob. 7LTSCh. 8.8 - Prob. 22PTSCh. 8.8 - Prob. 23ATSCh. 8.8 - Prob. 24ATSCh. 8.8 - Prob. 25ATSCh. 8.9 - Prob. 26CCCh. 8.9 - Prob. 27CCCh. 8.9 - Prob. 28CCCh. 8.9 - Prob. 8LTSCh. 8.9 - Prob. 29PTSCh. 8.9 - Prob. 31CCCh. 8.10 - Prob. 32CCCh. 8.10 - Prob. 33CCCh. 8.10 - Prob. 9LTSCh. 8.10 - Prob. 34PTSCh. 8.10 - Prob. 35ATSCh. 8.10 - Prob. 36ATSCh. 8.11 - Prob. 37CCCh. 8.11 - Prob. 38CCCh. 8.12 - Prob. 10LTSCh. 8.13 - Prob. 11LTSCh. 8.14 - Prob. 12LTSCh. 8.14 - Prob. 46PTSCh. 8.14 - Prob. 48ATSCh. 8.14 - Prob. 49ATSCh. 8 - Prob. 50PPCh. 8 - Prob. 51PPCh. 8 - Prob. 52PPCh. 8 - Prob. 53PPCh. 8 - Prob. 54PPCh. 8 - Prob. 55PPCh. 8 - Prob. 56PPCh. 8 - Prob. 57PPCh. 8 - Prob. 58PPCh. 8 - Prob. 59PPCh. 8 - Prob. 60PPCh. 8 - Prob. 61PPCh. 8 - Prob. 62PPCh. 8 - Prob. 63PPCh. 8 - Prob. 64PPCh. 8 - Prob. 65PPCh. 8 - Prob. 66PPCh. 8 - Prob. 67PPCh. 8 - Prob. 68PPCh. 8 - Prob. 69PPCh. 8 - Prob. 70PPCh. 8 - Prob. 71PPCh. 8 - Prob. 72PPCh. 8 - Prob. 73PPCh. 8 - Prob. 74PPCh. 8 - Prob. 75PPCh. 8 - Prob. 76PPCh. 8 - Prob. 77IPCh. 8 - Prob. 78IPCh. 8 - Prob. 79IPCh. 8 - Prob. 80IPCh. 8 - Prob. 81IPCh. 8 - Prob. 82IPCh. 8 - Prob. 83IPCh. 8 - Prob. 84IPCh. 8 - Prob. 85IPCh. 8 - Prob. 86IPCh. 8 - Prob. 87IP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY