The diatomic gas having a density of 3.164 g/L at STP should be identified. Concept introduction: STP : standard temperature and pressure, it is the condition of 273.2 K and 1 atm . The molar volume of gases at STP condition is similar and it is close to the molar volume of an ideal gas at STP condition. That is, 22.42 L. Hence, at STP the molar volume of a gas is considered as 22.42L. Equation for density is, Density = Mass Volume According to ideal gas equation for molecular mass, Molecular mass = Mass * R * Temperature Volume * pressure
The diatomic gas having a density of 3.164 g/L at STP should be identified. Concept introduction: STP : standard temperature and pressure, it is the condition of 273.2 K and 1 atm . The molar volume of gases at STP condition is similar and it is close to the molar volume of an ideal gas at STP condition. That is, 22.42 L. Hence, at STP the molar volume of a gas is considered as 22.42L. Equation for density is, Density = Mass Volume According to ideal gas equation for molecular mass, Molecular mass = Mass * R * Temperature Volume * pressure
Solution Summary: The author explains that the diatomic gas having a density of 3.164 g/L at STP is Chlorine.
The diatomic gas having a density of 3.164 g/L at STP should be identified.
Concept introduction:
STP: standard temperature and pressure, it is the condition of
273.2K and 1 atm.
The molar volume of gases at STP condition is similar and it is close to the molar volume of an ideal gas at STP condition. That is, 22.42 L. Hence, at STP the molar volume of a gas is considered as 22.42L.
Equation for density is,
Density=MassVolume
According to ideal gas equation for molecular mass,
b) Certain cyclic compounds are known to be conformationally similar to carbohydrates, although they are not
themselves carbohydrates. One example is Compound C shown below, which could be imagined as adopting
four possible conformations. In reality, however, only one of these is particularly stable. Circle the conformation
you expect to be the most stable, and provide an explanation to justify your choice. For your explanation to be
both convincing and correct, it must contain not only words, but also "cartoon" orbital drawings contrasting the
four structures.
Compound C
Possible conformations (circle one):
Дет
Lab Data
The distance entered is out of the expected range.
Check your calculations and conversion factors.
Verify your distance. Will the gas cloud be closer to the cotton ball with HCI or NH3?
Did you report your data to the correct number of significant figures?
- X
Experimental Set-up
HCI-NH3
NH3-HCI
Longer Tube
Time elapsed (min)
5 (exact)
5 (exact)
Distance between cotton balls (cm)
24.30
24.40
Distance to cloud (cm)
9.70
14.16
Distance traveled by HCI (cm)
9.70
9.80
Distance traveled by NH3 (cm)
14.60
14.50
Diffusion rate of HCI (cm/hr)
116
118
Diffusion rate of NH3 (cm/hr)
175.2
175.2
How to measure distance and calculate rate
For the titration of a divalent metal ion (M2+) with EDTA, the stoichiometry of the reaction is typically:
1:1 (one mole of EDTA per mole of metal ion)
2:1 (two moles of EDTA per mole of metal ion)
1:2 (one mole of EDTA per two moles of metal ion)
None of the above
Chapter 8 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.