Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
2nd Edition
ISBN: 9781337086431
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 8, Problem 59E
Interpretation Introduction

Interpretation: For the given data, the final pressure and temperature in the container should be determined.

Concept introduction:

By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law.

According to ideal gas law,

                                             PV=nRT

Where,

          P = pressure in atmospheres

          V= volumes in liters

          n = number of moles

          R =universal gas constant ( 0.08206L×atm/K×mol )

          T = temperature in kelvins

By knowing any three of these properties, the state of a gas can be simply identified with applying the ideal gas equation. For a gas at two conditions, the unknown variable can be determined by knowing the variables that change and remain constant and can be generated an equation for unknown variable from ideal gas equation.

Expert Solution & Answer
Check Mark

Answer to Problem 59E

Answer

The pressure inside the container if it is heated to 45°C=12.8atm

The temperature inside the container if the excreted pressure be 6.50 atm =161K

The temperature inside the container if the excreted pressure be 25.0atm=620.0K

Explanation of Solution

Explanation

According to ideal gas equation,

PV=nRT

By rearranging the above equation,

PVnT=R

Since R is a gas constant, and at constant n and V for a gas at two conditions the equation can be written as:

P1T1=VnR=P2T2orP1T1=P2T2 (1)

At constant volume and number of moles, for finding the equation for final pressure the above equation (1) becomes,

P2=P1T2T1 (2)

From the ideal gas equation, the equation for final pressure of gas for a gas at two conditions can be derived by knowing initial pressure ( P1 ), temperature ( T1 ) and final temperature ( T2 ). It is the ratio of product of initial pressure and final temperature to the initial temperature.

The given data and its values.

P1=11.0 atmT1=0°C=273Ksince,1K=°C+273=0°C+273=273KT2=45°C=318Ksince,1K=°C+273=45°C+273=318K

To find out the final pressure of gas, it is needed to take and write the given data and substitute their values in the equation (2). For two conditions problem, units for P and V just needed to be the same units and it is not needed to convert the standard units. But in the case of pressure, it must be converted to the Kelvin.

The final pressure of gas can be determined by substituting the given values to the equation (2) that derived from ideal gas law.

The given data into the equation (2) to get the final pressure of gas,

P2=11.0atm×318K273K=12.8atm

Derive the equation for final temperature of gas from ideal gas equation for a gas at two conditions

According to ideal gas equation,

PV=nRT

By rearranging the above equation,

PVnT=R

Since R is a gas constant, and at constant n and V for a gas at two conditions the equation can be written as:

P1T1=VnR=P2T2orP1T1=P2T2 (1)

At constant volume and number of moles, for finding the equation for final temperature the above equation (1) becomes,

                                             T2=T1P2P1 (2)

From the ideal gas equation, the equation for final pressure of gas for a gas at two conditions can be derived by knowing initial pressure ( P1 ), temperature ( T1 ) and final pressure ( P2 ). It is the ratio of product of initial temperature and final pressure to the initial pressure.

The given data and its values to determine the temperature inside the container if the excreted pressure be 6.50 atm

P1=11.0atmT1=0°C=273Ksince,1K=°C+273=0°C+273=273KP2=6.50atm

To find out the final temperature of gas, it is needed to take and write the given data and substitute their values in the equation (2). For two conditions problem, units for P and V just needed to be the same units and it is not needed to convert the standard units. But in the case of pressure, it must be converted to the Kelvin.

The given data into the equation (2) to get the final temperature of gas.

T2=273 K×6.50 atm11.0atm=161 K

The final temperature of gas can be determined by substituting the given values to the equation (2) that derived from ideal gas law.

The given data and its values to determine the temperature inside the container if the excreted pressure is 25.0atm

P1=11.0atmT1=0°C=273Ksince,1K=°C+273=0°C+273=273KP2=25atm

To find out the final temperature of gas, it is needed to take and write the given data and substitute their values in the equation (2). For two conditions problem, units for P and V just needed to be the same units and it is not needed to convert the standard units. But in the case of pressure, it must be converted to the Kelvin.

Substitute the given data into the equation (2) to get the final temperature of gas.

                                    T2=273 K×25.0 atm11.0atm=620. K

The final temperature of gas can be determined by substituting the given values to the equation (2) that derived from ideal gas law.

Conclusion

Conclusion

The final temperature and pressure in the container is measured by ideal gas equation.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please correct answer and don't used hand raiting
9. The following reaction, which proceeds via the SN1/E1 mechanisms, gives three alkene products (A, B, C) as well as an ether (D). (a) Show how each product arises mechanistically. (b) For the alkenes, determine the major product and justify your answer. (c) What clues in the reaction as shown suggest that this reaction does not go by the SN2/E2 mechanism route? (CH3)2CH-CH-CH3 CH3OH 1 Bl CH3OH ⑧· (CH3)2 CH-CH=CH2 heat H ⑥③ (CH3)2 C = C = CH3 © СнЗ-С-Снаснз сна (CH 3 ) 2 C H G H CH 3 оснз
Please Don't used hand raiting

Chapter 8 Solutions

Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card

Ch. 8 - Prob. 3ALQCh. 8 - Prob. 4ALQCh. 8 - Prob. 6ALQCh. 8 - Prob. 8ALQCh. 8 - Prob. 11ALQCh. 8 - Prob. 12ALQCh. 8 - Prob. 15ALQCh. 8 - Prob. 16ALQCh. 8 - Draw molecular-level views that show the...Ch. 8 - Prob. 20QCh. 8 - Prob. 21QCh. 8 - Prob. 22QCh. 8 - Prob. 23QCh. 8 - Prob. 24QCh. 8 - Prob. 25QCh. 8 - Consider two different containers, each filled...Ch. 8 - Prob. 27QCh. 8 - Prob. 28QCh. 8 - Prob. 29QCh. 8 - Prob. 30QCh. 8 - Prob. 31QCh. 8 - Prob. 32QCh. 8 - Prob. 33QCh. 8 - Prob. 34QCh. 8 - Prob. 35QCh. 8 - Prob. 36QCh. 8 - Prob. 37ECh. 8 - Prob. 38ECh. 8 - A sealed-tube manometer (as shown below) can be...Ch. 8 - Prob. 40ECh. 8 - A diagram for an open-tube manometer is shown...Ch. 8 - Prob. 42ECh. 8 - Prob. 43ECh. 8 - Prob. 44ECh. 8 - Prob. 45ECh. 8 - Prob. 46ECh. 8 - Prob. 47ECh. 8 - Prob. 48ECh. 8 - Prob. 49ECh. 8 - Prob. 50ECh. 8 - The Steel reaction vessel of a bomb calorimeter,...Ch. 8 - A 5.0-L flask contains 0.60 g O2 at a temperature...Ch. 8 - Prob. 53ECh. 8 - A person accidentally swallows a drop of liquid...Ch. 8 - A gas sample containing 1.50 moles at 25C exerts a...Ch. 8 - Prob. 56ECh. 8 - Prob. 57ECh. 8 - What will be the effect on the volume of an ideal...Ch. 8 - Prob. 59ECh. 8 - Prob. 60ECh. 8 - An ideal gas is contained in a cylinder with a...Ch. 8 - Prob. 62ECh. 8 - A sealed balloon is filled with 1.00 L helium at...Ch. 8 - Prob. 64ECh. 8 - Consider the following reaction:...Ch. 8 - A student adds 4.00 g of dry ice (solid CO2) to an...Ch. 8 - Air bags are activated when a severe impact causes...Ch. 8 - Concentrated hydrogen peroxide solutions are...Ch. 8 - In 1897 the Swedish explorer Andre tried to reach...Ch. 8 - Sulfur trioxide, SO3, is produced in enormous...Ch. 8 - A 15.0-L rigid container was charged with 0.500...Ch. 8 - An important process for the production of...Ch. 8 - Consider the reaction between 50.0 mL liquid...Ch. 8 - Urea (H2NCONH2) is used extensively as a nitrogen...Ch. 8 - Prob. 75ECh. 8 - Prob. 76ECh. 8 - Prob. 77ECh. 8 - A compound has the empirical formula CHCl. A...Ch. 8 - Prob. 79ECh. 8 - Given that a sample of air is made up of nitrogen,...Ch. 8 - Prob. 81ECh. 8 - Prob. 82ECh. 8 - Prob. 83ECh. 8 - Prob. 84ECh. 8 - Consider the flasks in the following diagram. What...Ch. 8 - Consider the flask apparatus in Exercise 85, which...Ch. 8 - Prob. 87ECh. 8 - At 0C a 1.0-L flask contains 5.0 102 mole of N2,...Ch. 8 - Prob. 89ECh. 8 - A tank contains a mixture of 52.5 g oxygen gas and...Ch. 8 - Prob. 91ECh. 8 - Helium is collected over water at 25C and 1.00 atm...Ch. 8 - At elevated temperatures, sodium chlorate...Ch. 8 - Xenon and fluorine will react to form binary...Ch. 8 - Methanol (CH3OH) can be produced by the following...Ch. 8 - In the Mthode Champenoise, grape juice is...Ch. 8 - Hydrogen azide, HN3, decomposes on heating by the...Ch. 8 - Prob. 98ECh. 8 - Some very effective rocket fuels are composed of...Ch. 8 - The oxides of Group 2A metals (symbolized by M...Ch. 8 - Prob. 101ECh. 8 - Prob. 102ECh. 8 - Prob. 103ECh. 8 - Prob. 104ECh. 8 - Prob. 105ECh. 8 - Prob. 106ECh. 8 - Prob. 107ECh. 8 - Prob. 108ECh. 8 - Prob. 109ECh. 8 - Prob. 110ECh. 8 - Prob. 111ECh. 8 - Prob. 112ECh. 8 - Prob. 113ECh. 8 - Prob. 114ECh. 8 - Prob. 115ECh. 8 - Prob. 116ECh. 8 - Prob. 117ECh. 8 - Prob. 118ECh. 8 - Prob. 119ECh. 8 - Prob. 120ECh. 8 - Prob. 121ECh. 8 - Prob. 122ECh. 8 - Prob. 123AECh. 8 - At STP, 1.0 L Br2 reacts completely with 3.0 L F2,...Ch. 8 - Prob. 125AECh. 8 - A 2.747g sample of manganese metal is reacted with...Ch. 8 - Prob. 127AECh. 8 - Cyclopropane, a gas that when mixed with oxygen is...Ch. 8 - The nitrogen content of organic compounds can be...Ch. 8 - Prob. 130AECh. 8 - A 15.0L tank is filled with H2 to a pressure of...Ch. 8 - A spherical glass container of unknown volume...Ch. 8 - Prob. 133AECh. 8 - A 20.0L stainless steel container at 25C was...Ch. 8 - Metallic molybdenum can be produced from the...Ch. 8 - Prob. 136AECh. 8 - Prob. 137AECh. 8 - One of the chemical controversies of the...Ch. 8 - An organic compound contains C, H, N, and O....Ch. 8 - Prob. 140AECh. 8 - The total volume of hydrogen gas needed to fill...Ch. 8 - Prob. 142AECh. 8 - Prob. 143CWPCh. 8 - Prob. 144CWPCh. 8 - A certain flexible weather balloon contains helium...Ch. 8 - Prob. 146CWPCh. 8 - A 20.0L nickel container was charged with 0.859...Ch. 8 - Consider the unbalanced chemical equation below:...Ch. 8 - Prob. 149CWPCh. 8 - Which of the following statements is(are) true? a....Ch. 8 - A chemist weighed out 5.14 g of a mixture...Ch. 8 - A mixture of chromium and zinc weighing 0.362 g...Ch. 8 - Prob. 153CPCh. 8 - You have an equimolar mixture of the gases SO2 and...Ch. 8 - Methane (CH4) gas flows into a combustion chamber...Ch. 8 - Prob. 156CPCh. 8 - Prob. 157CPCh. 8 - Prob. 158CPCh. 8 - You have a helium balloon at 1.00 atm and 25C. You...Ch. 8 - Prob. 160CPCh. 8 - You are given an unknown gaseous binary compound...Ch. 8 - Prob. 162CPCh. 8 - Calculate w and E when 1 mole of a liquid is...Ch. 8 - The preparation of NO2(g) from N2(g) and O2(g) is...Ch. 8 - In the presence of nitric acid, UO2+ undergoes a...Ch. 8 - Silane, SiH4, is the silicon analogue of methane,...Ch. 8 - Prob. 167IPCh. 8 - Prob. 168IPCh. 8 - Prob. 169MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry: Matter and Change
    Chemistry
    ISBN:9780078746376
    Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
    Publisher:Glencoe/McGraw-Hill School Pub Co
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    World of Chemistry, 3rd edition
    Chemistry
    ISBN:9781133109655
    Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
    Publisher:Brooks / Cole / Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning