Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
4th Edition
ISBN: 9780133942651
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 70EAP
A 500 g steel block rotates on a steel table while attached to a 1.2-m-long hollow tube as shown in FIGURE CP8.70. Compressed air fed through the tube and ejected from a nozzle on the back of the block exerts a thrust force of 4.0 N perpendicular to the tube.
The maximum tension the tube can withstand without breaking is 50 N. If the block starts from rest, how many revolutions does it make before the tube breaks?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 30-cm-diameter, 1.6 kg solid turntable rotates on a 1.6-cm-diameter, 450 g shaft at a constant 33 rpm. When you hit the stop switch, a brake pad presses against the shaft and brings the turntable to a halt in 15 seconds. How much friction force does the brake pad apply to the shaft?
A 210 g , 34.0-cm-diameter turntable rotates on frictionless bearings at 65.0 rpm . A 21.0 g block sits at the center of the turntable. A compressed spring shoots the block radically outward along a frictionless groove in the surface of the turntable.
What is the turntable's rotation angular velocity when the block reaches the outer edge?
A 1.5 kg block and a 2.7 kg block are attached to opposite ends of a light rope. The rope hangs over a solid, frictionless pulley that is 29cm in diameter and has a mass of 0.78kg. The pulley can be modeled as a cylinder. When the blocks are released, what is the acceleration of the lighter block?
Chapter 8 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Ch. 8 - In uniform circular motion, which of the following...Ch. 8 - A car runs out of gas while driving down a hill....Ch. 8 - FIGURE Q8.3 is a bird's-eye view of particles on...Ch. 8 - Tarzan swings through the jungle on a massless...Ch. 8 - FIGURE Q8.5 shows two balls of equal mass moving...Ch. 8 - Ramon and Sally are observing a toy car speed up...Ch. 8 - A jet plane is flying on a level course at...Ch. 8 - A small projectile is launched parallel to the...Ch. 8 - 9. You can swing a ball on a string in a vertical...Ch. 8 - A golfer starts with the club over her head and...
Ch. 8 - As a science fair project, you want to launch an...Ch. 8 - A 500 g model rocket is on a cart that is rolling...Ch. 8 - A 4.0 × 1010 kg asteroid is heading directly...Ch. 8 - A 55 kg astronaut who weighs 180 N on a distant...Ch. 8 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 8 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 8 - A 200 g block on a 50-cm-long string swings in a...Ch. 8 - In the Bohr model of the hydrogen atom, an...Ch. 8 - Suppose the moon were held in its orbit not by...Ch. 8 - 10. A highway curve of radius 500 m is designed...Ch. 8 - It is proposed that future space stations create...Ch. 8 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 8 - Mass m1on the frictionless table of FIGURE EX8.13...Ch. 8 - A satellite orbiting the moon very near the...Ch. 8 - What is free-fall acceleration toward the sun at...Ch. 8 - 16. A 9.4 × 1021 kg moon orbits a distant planet...Ch. 8 - Communications satellites are placed in circular...Ch. 8 - A car drives over the top of a hill that has a...Ch. 8 - The weight of passengers on a roller coaster...Ch. 8 - A roller coaster car crosses the top of a circular...Ch. 8 - The normal force equals the magnitude of the...Ch. 8 - A student has 65-cm-long arms. What is the minimum...Ch. 8 - While at the county fair, you decide to ride the...Ch. 8 - A 500 g ball swings in a vertical circle at the...Ch. 8 - A 500 g ball moves in a vertical circle on a...Ch. 8 - A heavy ball with a weight of 100 N (m = 10.2 kg)...Ch. 8 - A toy train rolls around a horizontal...Ch. 8 - 28. A new car is tested on a 200-m-diameter track....Ch. 8 - An 85,000 kg stunt plane performs a loop-the-loop,...Ch. 8 - Three cars are driving at 25 m/s along the road...Ch. 8 - Derive Equations 8.3 for the acceleration of a...Ch. 8 - 32. A 100 g bead slides along a frictionless wire...Ch. 8 - 33. Space scientists have a large test chamber...Ch. 8 - 34. A 5000 kg interceptor rocket is launched at an...Ch. 8 - Prob. 35EAPCh. 8 - 36. A rocket- powered hockey puck has a thrust of...Ch. 8 - Prob. 37EAPCh. 8 - A 2.0 kg projectile with initial velocity m/s...Ch. 8 - A 75 kg man weighs himself at the north pole and...Ch. 8 - A concrete highway curve of radius 70 m banked at...Ch. 8 - a. an object of mass m swings in horizontal circle...Ch. 8 -
42. You’ve taken your neighbor’s young child to...Ch. 8 - A 4.4-cm-diameter, 24 g plastic ball is attached...Ch. 8 - A charged particle of mass m moving with speed v...Ch. 8 - Two wires are tied to the 2.0 kg sphere shown in...Ch. 8 - Two wires are tied to the 300 g sphere shown in...Ch. 8 - A conical pendulum is formed by attaching a ball...Ch. 8 - The 10 mg bead in FIGURE P8.48 is free to slide on...Ch. 8 - In an old-fashioned amusement park ride,...Ch. 8 - The ultracentrifuge is an important tool for...Ch. 8 - In an amusement park ride called The Roundup,...Ch. 8 - 52. Suppose you swing a ball of mass m in a...Ch. 8 - A 30 g ball rolls around a 40-cm-diameter L-shaped...Ch. 8 - FIGURE P8.54 shows a small block of mass m sliding...Ch. 8 - The physics of circular motion sets an upper limit...Ch. 8 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 8 - A 60 g ball is tied to the end of a 50-cm-long...Ch. 8 - Elm Street has a pronounced dip at the bottom of a...Ch. 8 - 59. A 100 g ball on a 60-cm-long string is swung...Ch. 8 - Scientists design a new particle accelerator in...Ch. 8 - 61. A 1500 kg car starts from rest and drives...Ch. 8 - Prob. 62EAPCh. 8 - 63. A 2.0 kg ball swings in a vertical circle on...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - Sam (75 kg) takes off up a 50-m-high, 10°...Ch. 8 - In the absence of air resistance, a projectile...Ch. 8 - The father of Example 8.2 stands at the summit of...Ch. 8 - A small bead slides around a horizontal circle at...Ch. 8 - A 500 g steel block rotates on a steel table while...Ch. 8 - If a vertical cylinder of water (or any other...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- BIO The arm in Figure P10.35 weighs 41.5 N. The gravitational force on the arm acts through point A. Determine the magnitudes of the tension force F1 in the deltoid muscle and the force Fs exerted by the shoulder on the humerus (upper-arm bone) to hold the arm in the position shown. Figure P10.35arrow_forwardIn a popular amusement park ride, a rotating cylinder of radius 3.00 m is set in rotation at an angular speed of 5.00 rad/s, as in Figure P7.75. The floor then drops away, leaving the riders suspended against the wall in a vertical position. What minimum coefficient of friction between a rider’s clothing and the wall is needed to keep the rider from slipping? Hint: Recall that the magnitude of the maximum force of static friction is equal to μsn, where n is the normal force—in this case, the force causing the centripetal acceleration.arrow_forwardA circular bird feeder 19 cm in radius has rotational inertia of 0.12???2. It is suspended by a thin wire and is spinning slowly at 5.6 rpm. A 140-g bird lands on the feeder’s rim, coming in tangent to the rim at 1.1 m/s in a direction opposite the feeder rotation. What’s the rotation rate after the bird lands on the feeder?arrow_forward
- Figure P8.74 shows a vertical force applied tangentially to a uniform cylinder of weight w. The coefficient of static friction between the cylinder and all surfaces is 0.380. Find, in terms of w, the maximum force F that can be applied without causing the cylinder to rotate. (Hint: When the cylinder is on the verge of slipping, both friction forces are at their maximum values.) Figure P8.74arrow_forward. The last of the Babylon space stations, Babylon 5, is a cylinder of radius 420 m and mass 9.1 x 1012 kg. To simulate gravity the station spins around the axis of the cylinder. A person at the rim of the station experiences a weight 1.5 times the weight they would have on Earth's surface. What is the rotational rate of Babylon 5 in rpm? Explain including free body diagrams.arrow_forwardA 5 kg ball with a 0.4 meter radius is rolling on a horizontal surface at 3 m/s. The rotational inertia of the ball is 0.4mr2. The ball rolls up a 30-degree inclined plane. What is the maximum height that the ball reaches? - 0.4 meters - 0.5 meters - 0.6 meters - 1.3 metersarrow_forward
- There is a clever kitchen gadget for drying lettuce leaves after you was them. It consists of a cylindrical container mounted so that it can be rotated about its axis by turning a hand crank. The outer wall of the cylinder is perforated with small holes. You put the wet leaves in the container and turn the crank to spin off the water. The radius of the ontainer is 11.4 cm. When the cylinder is rotating at 1.36 revolutions per second, what is the magnitude of the centripetal acceleration of the outer wall?arrow_forwardA frictionless pulley, which can be modeled as a 0.80 kg solid cylinder with a 0.30 m radius, has a rope going over it, as shown. The tension in the rope is 10 N on one side and 12 N on the other. What is the angular acceleration of the pulley?arrow_forwardA 150 g ball and a 250 g ball are connected by a 37-cm-long, massless, rigid rod. The balls rotate about their center of mass at 150 rpm. What is the speed of the 150 g ball?arrow_forward
- Hint Three children are riding on the edge of a merry-go-round that has a mass of 105 kg and a radius of 1.60 m. The merry-go-round is spinning at 16.0 rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the 28.0 kg child moves to the center of the merry-go-round, what is the new angular velocity in revolutions per minute? Ignore friction, and assume that the merry-go-round can be treated as a solid disk and the children as point masses. Question Credit: OpenStax College Physics final angular velocity: rpm privacy policy terms of use contact us help about us careersarrow_forwardA 200 g, 20-cm-diameter plastic disk is spun on an axle through its center by an electric motor. What torque must the motor supply to take the disk from 0 to 1800 rpm in 4.0 s?arrow_forwardThe turbine fan blade of a turbojet engine is 1.7 m in diameter and rotates at 300 r/s. How fast is the tip of a blade moving? The linear velocity of the tip of the fan is approximately (Round the final answer to the nearest ten as needed. Round all intermediate values to the nearest thousandth as needed) m/s. Enter your answer in the answer box. 85% AP F9 F10 F11 F12 F6 F7 F8 F2 F3 F4 F5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License