Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
4th Edition
ISBN: 9780133942651
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 43EAP
A 4.4-cm-diameter, 24 g plastic ball is attached to a 1.2-m-long string and swung in a vertical circle. The ball’s speed is 6.1 m/s at the point where it is moving straight up. What is the magnitude of the net force on the ball? Air resistance is not negligible.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A daredevil is going to ride her rocket-powered motorcycle through a circular loop-the- loop which has a 3.0 meter radius. She has 50.0 meters to get up to speed before going into the loop. Assuming there is no friction or air resistance, what maximum force must be applied to the motorcycle over the 50.0 m in order for her to make it through the loop without losing consciousness? Most humans can experience accelerations up to 3g before losing consciousness. Assume the combined mass of the rider and motorcycle is 250 kg. I keep getting 367N but the study guide says 510 N (rounded from 514.5 N)
A student pushes a 12-kg block on a frictionless, horizontal surface. If the block is initially at rest, what is the speed of the block after the student pushes the block for 5 seconds with an acceleration of 2.0 m/s/s?
O 2.0 m/s
6.0 m/s
10 m/s
60 m/s
A block with mass m tied to a string with length L is being swung in a vertical circle (nothing touches the block
except for the string). At the highest point of the circle, the tension in the string has six times the magnitude of
the gravitational force acting on the block. What is the block's speed at this point?
5gl
O J6gl
V5gL
O Jīgl
7gL
O 7gL
Chapter 8 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Ch. 8 - In uniform circular motion, which of the following...Ch. 8 - A car runs out of gas while driving down a hill....Ch. 8 - FIGURE Q8.3 is a bird's-eye view of particles on...Ch. 8 - Tarzan swings through the jungle on a massless...Ch. 8 - FIGURE Q8.5 shows two balls of equal mass moving...Ch. 8 - Ramon and Sally are observing a toy car speed up...Ch. 8 - A jet plane is flying on a level course at...Ch. 8 - A small projectile is launched parallel to the...Ch. 8 - 9. You can swing a ball on a string in a vertical...Ch. 8 - A golfer starts with the club over her head and...
Ch. 8 - As a science fair project, you want to launch an...Ch. 8 - A 500 g model rocket is on a cart that is rolling...Ch. 8 - A 4.0 × 1010 kg asteroid is heading directly...Ch. 8 - A 55 kg astronaut who weighs 180 N on a distant...Ch. 8 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 8 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 8 - A 200 g block on a 50-cm-long string swings in a...Ch. 8 - In the Bohr model of the hydrogen atom, an...Ch. 8 - Suppose the moon were held in its orbit not by...Ch. 8 - 10. A highway curve of radius 500 m is designed...Ch. 8 - It is proposed that future space stations create...Ch. 8 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 8 - Mass m1on the frictionless table of FIGURE EX8.13...Ch. 8 - A satellite orbiting the moon very near the...Ch. 8 - What is free-fall acceleration toward the sun at...Ch. 8 - 16. A 9.4 × 1021 kg moon orbits a distant planet...Ch. 8 - Communications satellites are placed in circular...Ch. 8 - A car drives over the top of a hill that has a...Ch. 8 - The weight of passengers on a roller coaster...Ch. 8 - A roller coaster car crosses the top of a circular...Ch. 8 - The normal force equals the magnitude of the...Ch. 8 - A student has 65-cm-long arms. What is the minimum...Ch. 8 - While at the county fair, you decide to ride the...Ch. 8 - A 500 g ball swings in a vertical circle at the...Ch. 8 - A 500 g ball moves in a vertical circle on a...Ch. 8 - A heavy ball with a weight of 100 N (m = 10.2 kg)...Ch. 8 - A toy train rolls around a horizontal...Ch. 8 - 28. A new car is tested on a 200-m-diameter track....Ch. 8 - An 85,000 kg stunt plane performs a loop-the-loop,...Ch. 8 - Three cars are driving at 25 m/s along the road...Ch. 8 - Derive Equations 8.3 for the acceleration of a...Ch. 8 - 32. A 100 g bead slides along a frictionless wire...Ch. 8 - 33. Space scientists have a large test chamber...Ch. 8 - 34. A 5000 kg interceptor rocket is launched at an...Ch. 8 - Prob. 35EAPCh. 8 - 36. A rocket- powered hockey puck has a thrust of...Ch. 8 - Prob. 37EAPCh. 8 - A 2.0 kg projectile with initial velocity m/s...Ch. 8 - A 75 kg man weighs himself at the north pole and...Ch. 8 - A concrete highway curve of radius 70 m banked at...Ch. 8 - a. an object of mass m swings in horizontal circle...Ch. 8 -
42. You’ve taken your neighbor’s young child to...Ch. 8 - A 4.4-cm-diameter, 24 g plastic ball is attached...Ch. 8 - A charged particle of mass m moving with speed v...Ch. 8 - Two wires are tied to the 2.0 kg sphere shown in...Ch. 8 - Two wires are tied to the 300 g sphere shown in...Ch. 8 - A conical pendulum is formed by attaching a ball...Ch. 8 - The 10 mg bead in FIGURE P8.48 is free to slide on...Ch. 8 - In an old-fashioned amusement park ride,...Ch. 8 - The ultracentrifuge is an important tool for...Ch. 8 - In an amusement park ride called The Roundup,...Ch. 8 - 52. Suppose you swing a ball of mass m in a...Ch. 8 - A 30 g ball rolls around a 40-cm-diameter L-shaped...Ch. 8 - FIGURE P8.54 shows a small block of mass m sliding...Ch. 8 - The physics of circular motion sets an upper limit...Ch. 8 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 8 - A 60 g ball is tied to the end of a 50-cm-long...Ch. 8 - Elm Street has a pronounced dip at the bottom of a...Ch. 8 - 59. A 100 g ball on a 60-cm-long string is swung...Ch. 8 - Scientists design a new particle accelerator in...Ch. 8 - 61. A 1500 kg car starts from rest and drives...Ch. 8 - Prob. 62EAPCh. 8 - 63. A 2.0 kg ball swings in a vertical circle on...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - Sam (75 kg) takes off up a 50-m-high, 10°...Ch. 8 - In the absence of air resistance, a projectile...Ch. 8 - The father of Example 8.2 stands at the summit of...Ch. 8 - A small bead slides around a horizontal circle at...Ch. 8 - A 500 g steel block rotates on a steel table while...Ch. 8 - If a vertical cylinder of water (or any other...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 5 kg block lies on a frictionless horizontal surface. It is connected to another 3kg block by a string that passes a frictionless pulley. What is the acceleration of the blocks? 5kg 3kg O 2.45 m/s^2 O 16.33 m/s^2 O 6.13 m/s^2 3.68 m/s^2arrow_forwardAfter collecting so much Halloween candy, you want to find a secret place to eat it all without being bothered. You see a small hiding place on top of a neighbors shed. Luckily, the neighbor has a ramp that leads up to the roof of the shed. You pull your bag of candy with a mass of 6.2 kg up the frictionless ramp which is at an angle of 29 degrees above the horizontal. The bag has an acceleration of 1.81 m/s2 parallel to, and UP the ramp while you are pulling -What is the Normal Force exerted on bag of candy by the ramp? - What force do you need to pull with in order to give the bag an acceleration of 1.81 m/s2?arrow_forwardA pendulum has a length l (the rope is massless). The mass of the object suspended from the pendulum is m. With rope horizontal θ = 90o When it makes an angle of degrees, we first leave the object at no speed. Any friction can be neglected. Gravitational acceleration g. Give your answers in terms of l, m and g. When = 0o, what is the tension in the rope?arrow_forward
- .arrow_forwardNeglecting air resistance, with what initial speed would you have to throw a ball into the air so that it reaches a maximum height of 1 Earth radius above the surface of the Earth? G = 6.67 x 10-11 m3 kg-1 s2 REarth = 6.37 × 106 m %3D MEarth = 5.97 × 1024 kgarrow_forwardA woman pushes a 10.0 kg box across a horizontal floor with a constant force of magnitude 40.0 N directed at an angle of -25° with respect to the positive x-axis. The box moves horizontally to the right. At the origin (x=0) the box has an initial speed of 4.00 m/s and the woman pushes it to a location ofx=3.00 m. what is the force of the woman? what is the force of gravity? what is the normal force of the floor?arrow_forward
- An 8.00 kg box sits on a ramp that is inclined at 33.0 above the horizontal. The coefficient of kinetic friction between the box and the surface of the ramp is mk = 0.300. A constant horizontal force F = 26.0 N is applied to the box, and the box moves down the ramp. If the box is initially at rest, what is its speed 2.00 s after the force is applied?arrow_forwardA 0.152 kg ball is attached to a string that is 62.2 cm long. The string will break if subjected to a tension force of 4.8 N. If a small child swings the ball in a horizontal circle around her head, at what velocity will the string break?arrow_forwardSuppose you are at a bowling alley, where a machine uses a constant force and pushes balls up a ramp one meter in length. The balls are sliding -- not rolling -- along the incline, and they end up half a meter above the base of the ramp. Ignore friction. Approximately how much force does the machine put on a 5 kg bowling ball? 1.0 m H 0.5 m 200 N 50 N 25 N O 5N Impossible to determinearrow_forward
- You are a good tree climber and were helping your neighbor kid retrieve his pickle ball that was stuck on a tree branch. You estimated the ball is about 5 m above the ground. Once you climbed high enough, you retrieved the ball and tossed it downward at about 2 m/s downward. How long did the kid have to dodge before the ball hits the ground? You can assume the final position to be zero. The pickle ball has negligible amount of air drag. Hint: the ball has a downward initial velocity.arrow_forwardA 2.0 kg wood block is launched up a wooden ramp that is inclined at a 30° angle. The block’s initial speed is 10 m/s. What vertical height does the block reach above its starting point? What speed does it have when it slides back down to its starting point?arrow_forwardA 1500-kg car drives around a flat 25-m-radius circular track at 10 m/s (approximately 22 mph). What is the magnitude of the friction force on the car, in KN (kilo Newtons)? The coefficients of friction between the tire and the road on a dry day are µs = 1.0 and µk= 0.80. Use g = 10 m/s2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY