EP PHYSICS F/SCI.+ENGR.W/MOD..-MOD MAST
4th Edition
ISBN: 9780133899634
Author: GIANCOLI
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 67P
(II) An outboard motor for a boat is rated at 55 hp. If it can move a particular boat at a steady speed of 35 km/h, what is the total force resisting the motion of the boat?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
In the Donkey Kong Country video games you often get around by shooting yourself out of barrel cannons. Donkey Kong wants to launch out of one barrel and land in a different one that is a distance in x of 9.28 m away. To do so he launches himself at a velocity of 22.6 m/s at an angle of 30.0°. At what height does the 2nd barrel need to be for Donkey Kong to land in it? (measure from the height of barrel 1, aka y0=0)
For which value of θ is the range of a projectile fired from ground level a maximum?
90° above the horizontal
45° above the horizontal
55° above the horizontal
30° above the horizontal
60° above the horizontal
A map from The Legend of Zelda: The Breath of the Wild shows that Zora's Domain is 7.55 km in a direction 25.0° north of east from Gerudo Town. The same map shows that the Korok Forest is 3.13 km in a direction 55.0° west of north from Zora's Domain. The figure below shows the location of these three places. Modeling Hyrule as flat, use this information to find the displacement from Gerudo Town to Korok Forest. What is the magnitude of the displacement? Find the angle of the displacement. Measure the angle in degrees north of east of Gerudo Town.
Chapter 8 Solutions
EP PHYSICS F/SCI.+ENGR.W/MOD..-MOD MAST
Ch. 8.2 - By how much does the potential energy change when...Ch. 8.4 - In Example 83, what is the rock's speed just...Ch. 8.4 - Two balls are released from the same height above...Ch. 8 - List some everyday forces that are not...Ch. 8 - You lift a heavy book from a table to a high...Ch. 8 - The net force acting on a particle is conservative...Ch. 8 - When a superball is dropped, can it rebound to a...Ch. 8 - A hill has a height h. A child on a sled (total...Ch. 8 - Why is it tiring to push hard against a solid wall...Ch. 8 - Analyze the motion of a simple swinging pendulum...
Ch. 8 - In Mg. 825, water balloons are tossed from the...Ch. 8 - A coil spring of mass m rests upright on a table....Ch. 8 - What happens to the gravitational potential energy...Ch. 8 - Experienced hikers prefer to step over a fallen...Ch. 8 - (a) Where does the kinetic energy come from when a...Ch. 8 - The Earth is closest to the Sun in winter...Ch. 8 - Can the total mechanical energy E=K+Uever be...Ch. 8 - Suppose that you wish to launch a rocket from the...Ch. 8 - Recall from Chapter 4, Example 414, that you can...Ch. 8 - Two identical arrows, one with twice the speed of...Ch. 8 - A bowling ball is hung from the ceiling by a steel...Ch. 8 - A pendulum is launched from a point that is a...Ch. 8 - Describe the energy transformations when a child...Ch. 8 - Describe the energy transformations that take...Ch. 8 - Suppose you lift a suitcase from the floor to a...Ch. 8 - Repeat Question 23 for the power needed instead of...Ch. 8 - Why is it easier to climb a mountain via a zigzag...Ch. 8 - Figure 829 shows a potential energy curve, U(x)....Ch. 8 - (a) Describe in detail the velocity changes of a...Ch. 8 - Name the type of equilibrium for each position of...Ch. 8 - (I) A spring has a spring constant k of 82.0 N/m....Ch. 8 - (I) A 6.0-kg monkey swings from one branch to...Ch. 8 - (II) A spring with k = 63 N/m hangs vertically...Ch. 8 - (II) A 56.5-kg hiker starts at an elevation of...Ch. 8 - (II) A 1.60-m tall person lifts a 1.95-kg book off...Ch. 8 - (II) A 1200-kg car rolling on a horizontal surface...Ch. 8 - (II) A particular spring obeys the force law F =...Ch. 8 - (II) If U=3x2+2xy+4y2z, what is the force, F?Ch. 8 - (II) A particle is constrained to move in one...Ch. 8 - (II) A particle constrained to move in one...Ch. 8 - (I) A novice skier, starting from rest, slides...Ch. 8 - (I) Jane, looking for Tarzan, is running at top...Ch. 8 - (II) In the high jump, the kinetic energy of an...Ch. 8 - (II) A sled is initially given a shove up a...Ch. 8 - (II) A 55-kg bungee jumper leaps from a bridge....Ch. 8 - (II) A 72-kg trampoline artist jumps vertically...Ch. 8 - The total energy E of an object of mass m that...Ch. 8 - (II) A 0.40-kg hall is thrown with a speed of 8.5...Ch. 8 - (II) A vertical spring (ignore its mass), whose...Ch. 8 - (II) A roller-coaster car shown in Fig. 832 is...Ch. 8 - (II) When a mass m sits at rest on a spring, the...Ch. 8 - (II) Two masses are connected by a string as shown...Ch. 8 - (II) A block of mass m is attached to the end of a...Ch. 8 - (II) A cyclist intends to cycle up a 9.50 hill...Ch. 8 - (II) A pendulum 2.00 m long is released (from...Ch. 8 - (II) What should be the spring constant k of a...Ch. 8 - (III) An engineer is designing a spring to be...Ch. 8 - (III) A skier of mass m starts from rest at the...Ch. 8 - (I) Two railroad cars, each of mass 56,000 kg, are...Ch. 8 - (I) A 16.0-kg child descends a slide 2.20 m high...Ch. 8 - (II) A ski starts from rest and slides down a 28...Ch. 8 - (II) A 145-g baseball is dropped from a tree 14.0...Ch. 8 - (II) A 96-kg crate, starling from rest, is pulled...Ch. 8 - (II) Suppose the roller-coaster ear in Fig. 832...Ch. 8 - (II) A skier traveling 9.0 m/s reaches the fool of...Ch. 8 - (II) Consider the track shown in Fig. 837. The...Ch. 8 - (II) A 0.620-kg wood block is firmly attached to a...Ch. 8 - (II) A 180-g wood block is firmly attached to a...Ch. 8 - (II) You drop a ball from a height of 2.0 m, and...Ch. 8 - (II) A 56-kg skier starts from rest at the top of...Ch. 8 - (II) How much does your gravitational energy...Ch. 8 - (III) A spring (k = 75 N/m) has an equilibrium...Ch. 8 - (III) A 2.0-kg block slides along a horizontal...Ch. 8 - (III) Early lest flights for the space shuttle...Ch. 8 - (I) For a satellite of mass mS in a circular orbit...Ch. 8 - (I) Jill and her friends have built a small rocket...Ch. 8 - Prob. 47PCh. 8 - (II) Show that Eq. 816 for gravitational potential...Ch. 8 - (II) Determine the escape velocity from the Sun...Ch. 8 - (II) Two Earth satellites, A and B, each of mass m...Ch. 8 - (II) Show that the escape velocity for any...Ch. 8 - (II) (a) Show that the total mechanical energy of...Ch. 8 - (II) Take into account the Earths rotational speed...Ch. 8 - (II) (a) Determine a formula for the maximum...Ch. 8 - Prob. 55PCh. 8 - (II) A meteorite has a speed of 90.0 m/s when 850...Ch. 8 - (II) How much work would be required to move a...Ch. 8 - (II) (a) Suppose we have three masses, m1, m2, and...Ch. 8 - (II) A NASA satellite has just observed an...Ch. 8 - (II) A sphere of radius r1 has a concentric...Ch. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - (I) If a car generates 18 hp when traveling at a...Ch. 8 - (I) An 85-kg football player traveling 5.0 m/s is...Ch. 8 - (II) A driver notices that her 1080-kg car slows...Ch. 8 - (II) How much work can a 3.0-hp motor do in 1.0 h?Ch. 8 - (II) An outboard motor for a boat is rated at 55...Ch. 8 - (II) A 1400-kg sports car accelerates from rest to...Ch. 8 - (II) During a workout, football players ran up the...Ch. 8 - (II) A pump lifts 21.0 kg of water per minute...Ch. 8 - (II) A ski area claims that its lifts can move...Ch. 8 - (II) A 75-kg skier grips a moving rope that is...Ch. 8 - (III) The position of a 280-g object is given (in...Ch. 8 - (III) A bicyclist coasts clown a 6.0 hill at a...Ch. 8 - Draw a potential energy diagram, U vs. x, and...Ch. 8 - (II) The spring of Problem 75 has a stiffness...Ch. 8 - (III) The potential energy of the two atoms in a...Ch. 8 - (III) The binding energy of a two-particle system...Ch. 8 - What is the average power output of an elevator...Ch. 8 - A projectile is fired at an upward angle of 48.0...Ch. 8 - Water flows over a clam at the rate of 580kg/s and...Ch. 8 - A bicyclist of mass 75 kg (including the bicycle)...Ch. 8 - A 62-kg skier starts from rest at the top of a ski...Ch. 8 - Repeat Problem 83, but now assume the ski jump...Ch. 8 - A ball is attached to a horizontal cord of length ...Ch. 8 - Show the h must be greater than 0.60 if the ball...Ch. 8 - Show that on a roller coaster with a circular...Ch. 8 - If you stand on a bathroom scale, the spring...Ch. 8 - A 65-kg hiker climbs to the top of a 4200-m-high...Ch. 8 - The small mass m sliding without friction along...Ch. 8 - A 56-kg student runs at 5.0 m/s, grabs a hanging...Ch. 8 - The nuclear force between two neutrons in a...Ch. 8 - A fire hose for use in urban areas must be able to...Ch. 8 - A 16-kg sled starts up a 28 incline with a speed...Ch. 8 - The Lunar Module could make a safe landing if its...Ch. 8 - Proper design of automobile braking systems must...Ch. 8 - Some electric power companies use water to store...Ch. 8 - Estimate the energy required from fuel to launch a...Ch. 8 - Prob. 99GPCh. 8 - Suppose the gravitational potential energy of an...Ch. 8 - (a) If the human body could convert a candy bar...Ch. 8 - Electric energy units are often expressed in the...Ch. 8 - Chris jumps off a bridge with a bungee cord (a...Ch. 8 - In a common test for cardiac function (the stress...Ch. 8 - (a) If a volcano spews a 450-kg rock vertically...Ch. 8 - A film of Jesse Owenss famous long jump (Fig. 849)...Ch. 8 - An elevator cable breaks when a 920-kg elevator is...Ch. 8 - A particle moves where its potential energy is...Ch. 8 - A particle of mass m moves under the influence of...Ch. 8 - Prob. 110GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
The genes dumpy (dp), clot (cl), and apterous (ap) are linked on chromosome II of Drosophila. In a series of tw...
Concepts of Genetics (12th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
In the datura plant, purple flower color is controlled by a dominant allele P. White flowers are found in plant...
Genetic Analysis: An Integrated Approach (3rd Edition)
Describe the 1H NMR spectrum you would expect for each of the following compounds, indicating the relative posi...
Organic Chemistry (8th Edition)
With what geologic feature are the earthquakes in the mid-Atlantic associated?
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.arrow_forwardBelow you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Answer questions a-d. a) What was the total race time for each team, in seconds? b) Which team won the race? What was the difference in the teams’ times? c) What was the average speed for each team for the whole race? (provide answer to 3 decimal places). d) Calculate the average speed for each swimmer and report the results in a table like the one above. Remember to show the calculation steps. (provide answer to 3 decimal places). PLEASE SHOW ALL WORK AND STEPS.arrow_forwardNeed complete solution Pleasearrow_forward
- Below you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Fill out the chart below. Calculate average speed per split (m/s). Show all work.arrow_forwardThe magnitude of vector →A i s 261. m and points in the direction 349.° counterclockwise from the positive x-axis. Calculate the x-component of this vector . Calculate the y-component of this vector.arrow_forwardNo chatgpt pls will upvotearrow_forward
- 4.4 A man is dragging a trunk up the loading ramp of a mover's truck. The ramp has a slope angle of 20.0°, and the man pulls upward with a force F whose direction makes an angle of 30.0° 75.0° with the ramp (Fig. E4.4). (a) How large a force F is necessary for the component Fx parallel to the ramp to be 90.0 N? (b) How large will the component Fy perpendicular to the ramp be then? Figure E4.4 30.0 20.0°arrow_forward1. * A projectile is shot from a launcher at an angle e, with an initial velocity magnitude v., from a point even with a tabletop. The projectile lands on the tabletop a horizontal distance R (the "range") away from where it left the launcher. Set this up as a formal problem, and solve for vo (i.e., determine an expression for Vo in terms of only R, 0., and g). Your final equation will be called Equation 1.arrow_forward2. A projectile is shot from a launcher at an angle 0,, with an initial velocity magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a child's noggin (see Figure 1). The apple is a height y above the tabletop, and a horizontal distance x from the launcher. Set this up as a formal problem, and solve for x. That is, determine an expression for x in terms of only v₁, o,y and g. Actually, this is quite a long expression. So, if you want, you can determine an expression for x in terms of v., 0., and time t, and determine another expression for timet (in terms of v., 0., y and g) that you will solve and then substitute the value of t into the expression for x. Your final equation(s) will be called Equation 3 (and Equation 4).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399920/9781337399920_smallCoverImage.gif)
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399944/9781337399944_smallCoverImage.gif)
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY