Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 5P
If a sunspot has a temperature of 4200 K and the sunspot can be considered a blackbody, what is the wavelength of maximum intensity in nm units and what color is associated with this wavelength? Is this the color we see the sunspot as from Earth? Why or why not? (Hint: Refer to Wien’s law, Eq. 7-2.)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
a) At solar maximum sunspots might cover up to 0.4% of the total area of the Sun. If the sunspots have a temperature of 3800 K and the surrounding photosphere has a temperature of 6000 K, calculate the fractional change (as a percentage) in the luminosity due to the presence of the sunspots.
b) A star of the same stellar class as the Sun is observed regularly over many years, and a time series of its bolometric apparent magnitude is collected. What would be the signal in this time series which indicated that the star had a magnetic dynamo similar to the Sun? Briefly describe two or three possible sources of other signals which could confuse the interpretation of the data.
Given that the solar spectrum corresponds to a temperature of T- 5800K and peaks at a
wavelength of à = 500 nm, use Wien's law to determine the wavelength (2') corresponding to
the peak of the blackbody curve (a) in the core of the Sun, where the temperature is T' - 10'K, (b)
in the solar convection zone (10° K), and (c) just below the solar photosphere (10* K). [Hint:
AT - A'T' (why?)] What form (visible, infrared, X ray, etc.) does the radiation take in each case?
What was the minimum volumeVrequired to supply enough magneticenergy to fuel the flare?
What was the minimum volume V required to supply enough magnetic energy to fuel the flare? If the volume V is spherical, what is its radius? Is this greater than or less than the typical radius r≈104km of a sunspot?
Chapter 8 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 8 - Prob. 1RQCh. 8 - Prob. 2RQCh. 8 - Prob. 3RQCh. 8 - Prob. 4RQCh. 8 - Prob. 5RQCh. 8 - Prob. 6RQCh. 8 - What evidence can you give that granulation is...Ch. 8 - Prob. 8RQCh. 8 - Prob. 9RQCh. 8 - Prob. 10RQ
Ch. 8 - Prob. 11RQCh. 8 - Prob. 12RQCh. 8 - Prob. 13RQCh. 8 - Prob. 14RQCh. 8 - Energy can be transported by convection,...Ch. 8 - Prob. 16RQCh. 8 - Prob. 17RQCh. 8 - Prob. 18RQCh. 8 - Prob. 19RQCh. 8 - Meridional is derived from meridian. Look up the...Ch. 8 - Prob. 21RQCh. 8 - Prob. 22RQCh. 8 - How can solar flares affect Earth?Ch. 8 - Prob. 24RQCh. 8 - Why does nuclear fusion require high temperatures...Ch. 8 - Prob. 26RQCh. 8 - Four protons are combined in the proton-proton...Ch. 8 - Give an example of a charged subatomic particle...Ch. 8 - Prob. 29RQCh. 8 - Prob. 30RQCh. 8 - Prob. 31RQCh. 8 - Prob. 32RQCh. 8 - Prob. 33RQCh. 8 - The radius of the Sun is 0.7 million km. What...Ch. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - What is the angular diameter of a star the same...Ch. 8 - If a sunspot has a temperature of 4200 K and the...Ch. 8 - How many watts of radiation does a 1-meter-square...Ch. 8 - If a sunspot has a temperature of 4200 K and the...Ch. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - Prob. 14PCh. 8 - The United States consumes about 2.5 1019 J of...Ch. 8 - Prob. 16PCh. 8 - Prob. 1SOPCh. 8 - Prob. 2SOPCh. 8 - Whenever there is a total solar eclipse, you can...Ch. 8 - Prob. 2LTLCh. 8 - Prob. 3LTLCh. 8 - Prob. 4LTLCh. 8 - The two images here show two solar phenomena. What...Ch. 8 - Prob. 6LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Use Wein's law to determine the wavelength corresponding to the peak of the black body curve (a) in the core of the Sun, where the temperature is 10^7, (b) in the solar convection zone (10^5), and (c) just below the solar photosphere (10^4K). What form (visible, infrared, X-ray, etc.) does radiation take in each case?arrow_forward1 Solar constant, Sun, and the 10 pc distance! The luminosity of Sun is + 4- 1026 W - 4- 1033ergs-1, The Sun is located at a distance of m from the Earth. The Earth receives a radiant flux (above its atmosphere) of F = 1365W m- 2, also known as the solar constant. What would have been the Solar contact if the Sun was at a distance of 10 pc ? 1AU 1 1.5-+ 1011arrow_forwardIf a sunspot has a temperature of 4200 K and the average solar photosphere has a temperature of 5780 K, how much more energy is emitted in 1 second from a square meter of the photosphere compared to a square meter of the sunspot? (Hint: Use the Stefan-Boltzmann law, Eq. 7-1.)arrow_forward
- The text says that the Local Fluff, which surrounds the Sun, has a temperature of 7500 K and a density 0.1 atom per cm3. The Local Fluff is embedded in hot gas with a temperature of 106 K and a density of about 0.01 atom per cm3. Are they in equilibrium? (Hint: In pressure equilibrium, the two regions must have nT equal, where n is the number of particles per unit volume and T is the temperature.) What is likely to happen to the Local Fluff?arrow_forwardFrom the information in Figure 15.21, estimate the speed with which the particles in the CME in parts (c) and (d) are moving away from the Sun. Figure 15.21 Flare and Coronal Mass Ejection. This sequence of four images shows the evolution over time of a giant eruption on the Sun. (a) The event began at the location of a sunspot group, and (b) a flare is seen in far-ultraviolet light. (c) Fourteen hours later, a CME is seen blasting out into space. (d) Three hours later, this CME has expanded to form a giant cloud of particles escaping from the Sun and is beginning the journey out into the solar system. The white circle in (c) and (d) shows the diameter of the solar photosphere. The larger dark area shows where light from the Sun has been blocked out by a specially designed instrument to make it possible to see the faint emission from the corona. (credit a, b, c, d: modification of work by SOHO/EIT, SOHO/LASCO, SOHO/MDI (ESA & NASA))arrow_forwardWhy do you suppose so great a fraction of the Sun’s energy comes from its central regions? Within what fraction of the Sun’s radius does practically all of the Sun’s luminosity originate (see Figure 16.16)? Within what radius of the Sun has its original hydrogen been partially used up? Discuss what relationship the answers to these questions bear to one another. Figure 16.16 shows how the temperature, density, rate of energy generation, and composition vary from the center of the Sun to its surface.arrow_forward
- Now suppose that all of the hydrogen atoms in the Sun were converted into helium. How much total energy would be produced? (To calculate the answer, you will have to estimate how many hydrogen atoms are in the Sun. This will give you good practice with scientific notation, since the numbers involved are very large! See Appendix C for a review of scientific notation.)arrow_forwardIf the emitted infrared radiation from Pluto, has a wavelength of maximum intensity at 75,000 nm, what is the temperature of Pluto assuming it follows Wien’s law?arrow_forwardDetermine the change in the sun density of the E-layer when the citical frequency changes from 4 MHz to 1 MH2?arrow_forward
- If a sunspot has a temperature of 4,430 K and the sunspot can be considered a blackbody, what is the wavelength (in nm) of maximum intensity of the sunspot's radiation?arrow_forwardCalculate the total amount of radiative energy per second intercepted by Mars from the Sun using the flux of radiation from the Sun at Mars' orbital radius. Flux of radiation from the Sun at Mars' orbital radius is 597 W m-2. The luminosity of the Sun Ls = 3.8×1026 W. Mars orbits at a distance of 2.25×1011 m (1.5 AU) from the Sun. Note: Consider carefully the cross-sectional area Mars presents to the outwards flow of radiative energy when answering this question.arrow_forwardIf a sunspot has a temperature of 4,270 K and the average solar photosphere has a temperature of 5,780 K, how many times more energy is emitted in 1 second from a square meter of the photosphere compared to a square meter of the sunspot? (Hint: Use the Stefan-Boltzmann law, E = σT4 (J/s/m2) where E is the energy, σ is a proportionality constant equal to 5.67 ✕ 10−8 J/s/m2/K4, and T is the temperature in kelvins.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY