Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
4th Edition
ISBN: 9780133953145
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 5CQ
FIGURE Q8.5 shows two balls of equal mass moving in vertical circles. Is the tension in string A greater than, less than, or equal to the tension in string B if the balls travel over the top of the circle (a) with equal speed and (b) with equal
FIGURE Q8.5
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q. A large vertical cylinder spins about its axis fast enough that any person inside is held up
against the wall when drops away from the floor. The coefficient of static friction between
person and the wall is u, = 0.35, and the radius of cylinder r = 2m. What is the maximum
(linear) speed necessary to keep person from falling? (g = 9.80)
m
A
B
C
D
E
7.48 m/s 5.50 m/s 3.28 m/s 9.80 m/s 11.48 m/s
Two bugs, Buzz and Crunchy, are siting on a spinning disk on a horizontal plane. Buzz is sitting halfway and Crunchy is sitting at the outer edge as shown. The radius of the disk
is 0.80 m and the disk is rotating with an angular speed of 38 rpm. The coefficient of friction between the bugs and the disk are us = 0.80 and uk = 0.60. What is the magnitude
of the friction force on Buzz, in Newtons? Buzz has a mass of 2.0 kg (I know, a big bug!).
Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your
answer, it is already given in the question statement.
Crunchy
7. You are working during your summer break as an amusement
CR park ride operator. The ride you are controlling consists of
a large vertical cylinder that spins about its axis fast enough
any person inside is held up against the wall when the
floor drops away (Fig. P6.7). The coefficient of static friction
between a person of mass mand the wall is u, and the radius
of the cylinder is R. You are rotating the ride with an angular
speed o suggested by your
supervisor. (a) Suppose a
very heavy person enters
the ride. Do you need to
increase the angular speed
so that this person will
that
not slide down the wall?
(b) Suppose some one enters
the ride wearing a very slip-
pery satin workout outfit
In this case, do you need to
increase the angular speed
so that this person will not
R
Figure P6.7
slide down the wall?
Chapter 8 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Ch. 8 - In uniform circular motion, which of the following...Ch. 8 - A car runs out of gas while driving down a hill....Ch. 8 - FIGURE Q8.3 is a bird's-eye view of particles on...Ch. 8 - Tarzan swings through the jungle on a massless...Ch. 8 - FIGURE Q8.5 shows two balls of equal mass moving...Ch. 8 - Ramon and Sally are observing a toy car speed up...Ch. 8 - A jet plane is flying on a level course at...Ch. 8 - A small projectile is launched parallel to the...Ch. 8 - 9. You can swing a ball on a string in a vertical...Ch. 8 - A golfer starts with the club over her head and...
Ch. 8 - As a science fair project, you want to launch an...Ch. 8 - A 500 g model rocket is on a cart that is rolling...Ch. 8 - A 4.0 × 1010 kg asteroid is heading directly...Ch. 8 - A 55 kg astronaut who weighs 180 N on a distant...Ch. 8 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 8 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 8 - A 200 g block on a 50-cm-long string swings in a...Ch. 8 - In the Bohr model of the hydrogen atom, an...Ch. 8 - Suppose the moon were held in its orbit not by...Ch. 8 - 10. A highway curve of radius 500 m is designed...Ch. 8 - It is proposed that future space stations create...Ch. 8 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 8 - Mass m1on the frictionless table of FIGURE EX8.13...Ch. 8 - A satellite orbiting the moon very near the...Ch. 8 - What is free-fall acceleration toward the sun at...Ch. 8 - 16. A 9.4 × 1021 kg moon orbits a distant planet...Ch. 8 - Communications satellites are placed in circular...Ch. 8 - A car drives over the top of a hill that has a...Ch. 8 - The weight of passengers on a roller coaster...Ch. 8 - A roller coaster car crosses the top of a circular...Ch. 8 - The normal force equals the magnitude of the...Ch. 8 - A student has 65-cm-long arms. What is the minimum...Ch. 8 - While at the county fair, you decide to ride the...Ch. 8 - A 500 g ball swings in a vertical circle at the...Ch. 8 - A 500 g ball moves in a vertical circle on a...Ch. 8 - A heavy ball with a weight of 100 N (m = 10.2 kg)...Ch. 8 - A toy train rolls around a horizontal...Ch. 8 - 28. A new car is tested on a 200-m-diameter track....Ch. 8 - An 85,000 kg stunt plane performs a loop-the-loop,...Ch. 8 - Three cars are driving at 25 m/s along the road...Ch. 8 - Derive Equations 8.3 for the acceleration of a...Ch. 8 - 32. A 100 g bead slides along a frictionless wire...Ch. 8 - 33. Space scientists have a large test chamber...Ch. 8 - 34. A 5000 kg interceptor rocket is launched at an...Ch. 8 - Prob. 35EAPCh. 8 - 36. A rocket- powered hockey puck has a thrust of...Ch. 8 - Prob. 37EAPCh. 8 - A 2.0 kg projectile with initial velocity m/s...Ch. 8 - A 75 kg man weighs himself at the north pole and...Ch. 8 - A concrete highway curve of radius 70 m banked at...Ch. 8 - a. an object of mass m swings in horizontal circle...Ch. 8 -
42. You’ve taken your neighbor’s young child to...Ch. 8 - A 4.4-cm-diameter, 24 g plastic ball is attached...Ch. 8 - A charged particle of mass m moving with speed v...Ch. 8 - Two wires are tied to the 2.0 kg sphere shown in...Ch. 8 - Two wires are tied to the 300 g sphere shown in...Ch. 8 - A conical pendulum is formed by attaching a ball...Ch. 8 - The 10 mg bead in FIGURE P8.48 is free to slide on...Ch. 8 - In an old-fashioned amusement park ride,...Ch. 8 - The ultracentrifuge is an important tool for...Ch. 8 - In an amusement park ride called The Roundup,...Ch. 8 - 52. Suppose you swing a ball of mass m in a...Ch. 8 - A 30 g ball rolls around a 40-cm-diameter L-shaped...Ch. 8 - FIGURE P8.54 shows a small block of mass m sliding...Ch. 8 - The physics of circular motion sets an upper limit...Ch. 8 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 8 - A 60 g ball is tied to the end of a 50-cm-long...Ch. 8 - Elm Street has a pronounced dip at the bottom of a...Ch. 8 - 59. A 100 g ball on a 60-cm-long string is swung...Ch. 8 - Scientists design a new particle accelerator in...Ch. 8 - 61. A 1500 kg car starts from rest and drives...Ch. 8 - Prob. 62EAPCh. 8 - 63. A 2.0 kg ball swings in a vertical circle on...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - Sam (75 kg) takes off up a 50-m-high, 10°...Ch. 8 - In the absence of air resistance, a projectile...Ch. 8 - The father of Example 8.2 stands at the summit of...Ch. 8 - A small bead slides around a horizontal circle at...Ch. 8 - A 500 g steel block rotates on a steel table while...Ch. 8 - If a vertical cylinder of water (or any other...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A67arrow_forwardThe Gravitron ride has people step in, lean against a wall and “stick” when it spins and the floor drops out after a certain velocity. A rider has a mass of 50kg. The coefficient of static friction of the body against a wall is 0.8. The diameter of the ride is 10m. What is the maximum period of the ride’s rotation that will keep the student pinned to the wall once the floor drops?arrow_forwardA 4.0-kg object is attached to a vertical rod by two strings as shown in Figure P7.69. The object rotates in a horizontal circle at constant speed 6.00 m/s. Find the tension in (a) the upper string and (b) the lower string.arrow_forward
- A ferris wheel with a 20m radius and tangential speed of 4 m/s has all 70kg of you riding it. How big is the normal force exerted on you a. At the top?b. At the bottom?arrow_forwardP8. A 30kg child rides a circus train that performs vertical turns of radius 20 m every 22 sec. What is the resulting force when the child is at the top of the trajectory?arrow_forwardHelparrow_forward
- A boy on a skateboard makes an uninclined turn with a radius of curvature of 4.4 m and is on the verge of skidding. The coefficient of static friction between the skateboard's wheels and the asphalt is 0.7. How fast is the skateboard in m/s? Consider g = 10 m/s^2. a. 11,10 b. 11,71 c. 8,32 d. 1,89 e. 4,22 f. None of the other alternatives are correct. g. 5,55 h. 6,83arrow_forwardTwo wires are tied to the 400 g sphere. The sphere revolves in a horizontal circle at a constant speed of 7.10 m/s. What is the tension of the upper wire? What is the tension of the lower wire?arrow_forwardThe passengers in a roller coaster car feel 50%% heavier than their true weight as the car goes through a dip with a 40 mm radius of curvature. What is the car's speed at the bottom of the dip?arrow_forward
- A skateboarder is attempting to make a circular arc of radius r = 16 m in a parking lot. The total mass of the skateboard and skateboarder is m = 91 kg. The coefficient of static friction between the surface of the parking lot and the wheels of the skateboard is μs = 0.69 . a)What is the maximum speed, in meters per second, he can travel through the arc without slipping? b) He speeds up very slightly and begins to slide. The coefficient of kinetic friction is μk = 0.24. What is the new magnitude of his radial acceleration in m/s2?arrow_forwardA skateboarder is attempting to make a circular arc of radius r = 19 m in a parking lot. The total mass of the skateboard and skateboarder is m = 95 kg. The coefficient of static friction between the surface of the parking lot and the wheels of the skateboard is μs = 0.66 . A) What is the maximum speed, in meters per second, he can travel through the arc without slipping? B) He speeds up very slightly and begins to slide. The coefficient of kinetic friction is μk = 0.21. What is the new magnitude, in meters per squared second, of his radial acceleration?arrow_forwardAt an amusement park there is a ride in which cylindrically shaped chambers spin around a central axis. People sit in seats facing the axis, their backs against the outer wall. At one instant the outer wall moves at a speed of 3.16 m/s, and an 85.3-kg person feels a 546-N force pressing against his back. What is the radius of a chamber?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY