Concept explainers
A 100 g ball on a 60-cm-long string is swung in a vertical circle about a point 200 cm above the floor. The tension in the string when the ball is at the very bottom of the circle is 5.0 N. A very sharp knife is suddenly inserted, as shown in FIGURE P8.56, to cut the string directly below the point of support. How far to the right of where the string was cut does the ball hit the floor?
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
Chapter 8 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Additional Science Textbook Solutions
Human Anatomy & Physiology (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Chemistry: A Molecular Approach (4th Edition)
Biology: Life on Earth (11th Edition)
Introductory Chemistry (6th Edition)
- nd 4. A 22.0 kg child is riding a playground merry-go-round that is rotating at 40.0 rev/min. What centripetal acceleration does she experience to stay on if she is 1.25 m from its center? a = 5. The driver of a 1000-kg car tries to turn through a circle of radius 100 m on an unbanked curve at a speed of 16.0 m/s. The kinetic friction coefficient between the tires and slippery road is u = 0.25. First calculate (a) the magnitude of friction and (b) centripetal force required to make the circular turn. (c) C the driver make the circular turn without slipping?arrow_forwardA 90 g bead on a 60 cm long string is swung in a vertical circle about a point 200 cm above the floor. The tension in the string when the bead is at the very bottom of the circle is 2.2 N. A very sharp knife is suddenly inserted, as shown in the figure, to cut the string directly below the point of support. How far to the right of the center of the circle does the ball hit the floor? ... 60 cm Knife 200 cm А) 200 cm в) 240 сm 190 cm D) 160 cmarrow_forwardA 2.00Kg puck on a frictionless horizontal surface on the Earth is constrained to a circular orbit by a 4.00 meter long string attached to a vertical rod. Assume the string is attached to the rod by a ring that lets it revolve around the rod without friction. The string can withstand up to a 50.0N tension without breaking. What is the maximum tangential speed that the puck can have without breaking the string? a. 10.0 m/s b. 100 m/s c. 12.5 m/s d. 14.1 m/s e. 7.07 m/sarrow_forward
- In a home laundry dryer, a cylindrical tub containing wet clothes is rotated steadily about a horizontal axis, as shown in Figure P7.61. So that the clothes will dry uniformly, they are made to tumble. The rate of rotation of the smooth-walled tub is chosen so that a small piece of cloth will lose contact with the tub when the cloth is at an angle of0 = 68.0° above the horizontal. If the radius of the tub is r = 0.330 m, what rate of revolution is needed in revolutions per second?arrow_forwardA typical road bike wheel has a diameter of 70 cm including the tire. In a time trial, when a cyclist is racing along at 12 m/s:a. How fast is a point at the top of the tire moving?b. How fast, in rpm, are the wheels spinning?arrow_forwardA 4.0-kg object is attached to a vertical rod by two strings as shown in Figure P7.69. The object rotates in a horizontal circle at constant speed 6.00 m/s. Find the tension in (a) the upper string and (b) the lower string.arrow_forward
- Two bugs, Buzz and Crunchy, are siting on a spinning disk on a horizontal plane. Buzz is sitting halfway and Crunchy is sitting at the outer edge as shown. The radius of the disk is 0.80 m and the disk is rotating with an angular speed of 38 rpm. The coefficient of friction between the bugs and the disk are us = 0.80 and uk= 0.60. What is Buzz's speed, in m/s? Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement. Buzz Crunchyarrow_forwardYou are swinging a 0.45 kg water balloon vertically. The distance from your shoulder (acting as the center of rotation) and the water balloon is about 0.70 m. You estimate the water balloon is traveling at 6.0 m/s. At the very bottom of the circular path, how much force is your hand holding the water balloon?arrow_forwardA 5 kg hoop (I=MR2) with a radius of 2 m is placed at the top of a hill that is 8 m high. There is just enough friction of the hoop to roll when it is released from rest. What is the hoop's translational (traveling) speed at the bottom of the hill? Please use 10 m/s2 for the magnitude of the acceleration due to gravity.arrow_forward
- A car is accelerating from rest. There is a 1.6 g pebble stuck in the tread of one of the tires 0.38 m from the center of rotation. The pebble is held in place with static friction which has a maximum value of 3.6 N. What speed does the car reach when the pebble pulls out of the tread? Use Newton's 2nd Law and centripetal acceleration to solve this. Think about the relationship between the translational speed of the car and the tangent speed of the pebble.arrow_forwardA 2 kg rock is swung in a circular path and in a vertical plane on a 4 m length string. At the top of the path, the angular velocity is 5 rad/s. What is the tension in the string at that point?arrow_forwardDavid is getting ready to take down the mighty Goliath. David ties a 583 g rock to a rope that is 2.30 m in length. If David starts to swing the rope in a horizontal circle and is tilted down at a 5.94° angle, what is angular speed of the rock?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College