Concept explainers
(a)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying
Answer to Problem 49QAP
Explanation of Solution
The compound is adipic acid,
Molar mass of carbon is 12.01 g/mol, hydrogen is 1.008 g/mol and oxygen is 16.0 g/mol.
Thus, the molar mass of adipic acid can be calculated as follows:
Now, mass of carbon in 1 mol is 12.01 g thus, mass of 6 mol of carbon will be:
Mass of adipic acid in 1 mol is 146.14 g.
Thus, mass percent of C can be calculated as follows:
(b)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying
Answer to Problem 49QAP
Explanation of Solution
The compound is ammonium nitrate
Molar mass of nitrogen is 14 g/mol, hydrogen is 1.008 g/mol and oxygen is 16.0 g/mol.
Thus, the molar mass of ammonium nitrate can be calculated as follows:
Now, mass of nitrogen in 1 mol is 14 g thus, mass of nitrogen in 2 mol is 28 g.
Mass of ammonium nitrate in 1 mol is 80.043 g.
Thus, mass percent of N can be calculated as follows:
(c)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying
Answer to Problem 49QAP
Explanation of Solution
The compound is caffeine
Molar mass of carbon is 12.01 g/mol, hydrogen is 1.008 g/mol, nitrogen is 14 g/mol and oxygen is 16.0 g/mol.
Thus, the molar mass of caffeine can be calculated as follows:
Now, mass of carbon in 1 mol is 12.01 g thus, mass of carbon in 8 mol will be:
Mass of caffeine in 1 mol is 194.2 g.
Thus, mass percent of C can be calculated as follows:
(d)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying
Answer to Problem 49QAP
Explanation of Solution
The compound is chlorine dioxide
Molar mass of chlorine is 35.5 g/mol and oxygen is 16.0 g/mol.
Thus, the molar mass of chlorine dioxide can be calculated as follows:
Now, mass of chlorine in 1 mol is 35.5 g and mass of chlorine dioxide in 1 mol is 67.5 g.
Thus, mass percent of Cl can be calculated as follows:
(e)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying
Answer to Problem 49QAP
Explanation of Solution
The compound is cyclohexanol
Molar mass of carbon is 12.01 g/mol, molar mass of hydrogen is 1.008 g/mol and oxygen is 16.0 g/mol.
Thus, the molar mass of cyclohexanol can be calculated as follows:
Now, mass of carbon in 1 mol is 12.01 g thus, mass of carbon in 6 mol is 72.06 g.
Mass of cyclohexanol in 1 mol is 100.16 g.
Thus, mass percent of C can be calculated as follows:
(f)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying
Answer to Problem 49QAP
Explanation of Solution
The compound is dextrose
Molar mass of carbon is 12.01 g/mol, molar mass of hydrogen is 1.008 g/mol and oxygen is 16.0 g/mol.
Thus, the molar mass of dextrose can be calculated as follows:
Now, mass of carbon in 1 mol is 12.01 g thus, mass of carbon in 6 mol is 72.06 g.
Mass of cyclohexanol in 1 mol is 100.16 g.
Thus, mass percent of C can be calculated as follows:
(g)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying
Answer to Problem 49QAP
Explanation of Solution
The compound is eicosane
Molar mass of carbon is 12.01 g/mol and molar mass of hydrogen is 1.008 g/mol.
Thus, the molar mass of eicosane can be calculated as follows:
Now, mass of carbon in 1 mol is 12.01 g thus, mass of carbon in 20 mol is 240.2 g.
Mass of eicosane in 1 mol is 282.55 g.
Thus, mass percent of C can be calculated as follows:
(h)
Interpretation:
The percent by mass of element listed first in the formula of a compound should be calculated.
Concept Introduction:
A chemical compound is a collection of several atoms. Molar masses of each and every atom collectively provide the molar mass of that compound.
Mass fraction for a given element can be converted into mass percent by multiplying
Answer to Problem 49QAP
Explanation of Solution
The compound is ethanol
Molar mass of carbon is 12.01 g/mol molar mass of oxygen is 16.0 g/mol and molar mass of hydrogen is 1.008 g/mol.
Thus, the molar mass of ethanol can be calculated as follows:
Now, mass of carbon in 1 mol is 12.01 g thus, mass of carbon in 2 mol is 24.02 g.
Mass of ethanol in 1 mol is 46.1 g.
Thus, mass percent of C can be calculated as follows:
Want to see more full solutions like this?
Chapter 8 Solutions
Introductory Chemistry: A Foundation
- 4 Part C Give the IUPAC name and a common name for the following ether: Spell out the full names of the compound in the indicated order separated by a comma.arrow_forwardTry: Draw possible resonance contributing structures for the following organic species: CH3CH2NO2 [CH2CHCH2] [CH2CHCHO] [CH2CHCH2] [CH2CHNH2]arrow_forwardComplete the following synthesis. (d). H+ ง сarrow_forward
- Can the target compound be efficiently synthesized in good yield from the substituted benzene of the starting material? If yes, draw the synthesis. Include all steps and all reactants.arrow_forwardThis is a synthesis question. Why is this method wrong or worse than the "correct" method? You could do it thiss way, couldn't you?arrow_forwardTry: Draw the best Lewis structure showing all non-bonding electrons and all formal charges if any: (CH3)3CCNO NCO- HN3 [CH3OH2]*arrow_forward
- What are the major products of the following reaction? Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.arrow_forwardZeolites. State their composition and structure. Give an example.arrow_forwardDon't used hand raiting and show all reactionsarrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardIX) By writing the appropriate electron configurations and orbital box diagrams briefly EXPLAIN in your own words each one of the following questions: a) The bond length of the Br2 molecule is 2.28 Å, while the bond length of the compound KBr is 3.34 Å. The radius of K✶ is 1.52 Å. Determine the atomic radius in Å of the bromine atom and of the bromide ion. Br = Br b) Explain why there is a large difference in the atomic sizes or radius of the two (Br and Br). Tarrow_forwardWhen 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning