(a) Interpretation: The molar mass of adipic acid ( C 6 H 10 O 4 ) should be calculated. Concept Introduction: Molar mass refers to the mass of one mole of the compound. It is calculate by adding the mass of each atom of each element present in one molecule of a compound.
(a) Interpretation: The molar mass of adipic acid ( C 6 H 10 O 4 ) should be calculated. Concept Introduction: Molar mass refers to the mass of one mole of the compound. It is calculate by adding the mass of each atom of each element present in one molecule of a compound.
The molar mass of adipic acid (C6H10O4) should be calculated.
Concept Introduction:
Molar mass refers to the mass of one mole of the compound. It is calculate by adding the mass of each atom of each element present in one molecule of a compound.
Expert Solution
Answer to Problem 111AP
The molar mass of adipic acid (C6H10O4) is 146.1 g/mol.
Explanation of Solution
Molar mass of adipic acid (C6H10O4)
=[6(Atomic mass of C)+10(Atomic mass of H)+4(Atomic mass of O)]=[6(12.01)+10(1.008)+4(15.99)]g/mol=146.1 g/mol
Here,
Atomic mass of carbon = 12.01 g/mol.
Atomic mass of hydrogen = 1.008 g/mol.
Atomic mass of oxygen = 15.99 g/mol.
Interpretation Introduction
(b)
Interpretation:
The molar mass of caffeine (C8H10N4O2) should be calculated.
Concept Introduction:
Molar mass refers to the mass of one mole of the compound. It is calculate by adding the mass of each atom of each element present in one molecule of a compound.
Expert Solution
Answer to Problem 111AP
The molar mass of caffeine (C8H10N4O2) is 194.1 g/mol.
Explanation of Solution
Molar mass of caffeine (C8H10N4O2)
=[8(atomic mass of C)+10(atomic mass of H)+4(atomic mass of N)+2(atomic mass of O)]=[8(12.01)+10(1.008)+4(14)+2(15.99)]g/mol=194.1 g/mol
Here,
Atomic mass of carbon = 12.01 g/mol.
Atomic mass of hydrogen = 1.008 g/mol.
Atomic mass of nitrogen = 14 g/mol.
Atomic mass of oxygen = 15.99 g/mol.
Interpretation Introduction
(c)
Interpretation:
The molar mass of eicosane (C20H42) should be calculated.
Concept Introduction:
Molar mass refers to the mass of one mole of the compound. It is calculate by adding the mass of each atom of each element present in one molecule of a compound.
Expert Solution
Answer to Problem 111AP
The molar mass of eicosane (C20H42) is 282.5 g/mol.
Explanation of Solution
Molar mass of eicosane (C20H42)
=[20(atomic mass of C)+42(atomic mass of H)]=[20(12.01)+42(1.008)]g/mol=282.5 g/mol
Here,
Atomic mass of carbon = 12.01 g/mol.
Atomic mass of hydrogen = 1.008 g/mol.
Interpretation Introduction
(d)
Interpretation:
The molar mass of cyclohexanol (C6H11OH) should be calculated.
Concept Introduction:
Molar mass refers to the mass of one mole of the compound. It is calculate by adding the mass of each atom of each element present in one molecule of a compound.
Expert Solution
Answer to Problem 111AP
The molar mass of cyclohexanol (C6H11OH) is 100.15 g/mol.
Explanation of Solution
Molar mass of cyclohexanol (C6H11OH)
=[6(Atomic mass of C)+12(Atomic mass of H)+1(Atomic mass of O)]=[6(12.01)+12(1.008)+1(15.99)]g/mol=100.15 g/mol
Here,
Atomic mass of carbon = 12.01 g/mol.
Atomic mass of hydrogen = 1.008 g/mol.
Atomic mass of oxygen = 15.99 g/mol.
Interpretation Introduction
(e)
Interpretation:
The molar mass of vinyl acetate (C4H6O2) should be calculated.
Concept Introduction:
Molar mass refers to the mass of one mole of the compound. It is calculate by adding the mass of each atom of each element present in one molecule of a compound.
Expert Solution
Answer to Problem 111AP
The molar mass of vinyl acetate (C4H6O2) is 86.09 g/mol.
Explanation of Solution
Molar mass of vinyl acetate (C4H6O2)
=[4(Atomic mass of C)+6(Atomic mass of H)+2(Atomic mass of O)]=[4(12.01)+6(1.008)+2(15.99)] g/mol=86.09 g/mol
Here,
Atomic mass of carbon = 12.01 g/mol.
Atomic mass of hydrogen = 1.008 g/mol.
Atomic mass of oxygen = 15.99 g/mol.
Interpretation Introduction
(f)
Interpretation:
The molar mass of dextrose (C6H12O6) should be calculated.
Concept Introduction:
Molar mass refers to the mass of one mole of the compound. It is calculated by adding the mass of each atom of each element present in one molecule of a compound.
Expert Solution
Answer to Problem 111AP
The molar mass of dextrose (C6H12O6) is 180.1 g/mol.
Explanation of Solution
Molar mass of dextrose (C6H12O6)
=[6(Atomic mass of C)+12(Atomic mass of H)+6(Atomic mass of O)]=[6(12.01)+12(1.008)+6(15.99)] g/mol =180.1 g/mol
Here,
Atomic mass of carbon = 12.01 g/mol.
Atomic mass of hydrogen = 1.008 g/mol.
Atomic mass of oxygen = 15.99 g/mol.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Please answer the questions and provide detailed explanations.
solve please
Please answer the question and provide a detailed drawing of the structure. If there will not be a new C – C bond, then the box under the drawing area will be checked.
Will the following reaction make a molecule with a new C – C bond as its major product:
Draw the major organic product or products, if the reaction will work. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry.