EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 41QTP
What would be the tensile strength and the modulus of elasticity of the ceramic in Problem 8.39 for porosities of 25% and 50%, for the four n values given?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please no typing no internet connection
Answer 4th pls
The modulus of elasticity for a ceramic material having 4.1 vol% porosity is 323 GPa.
(a) Calculate the modulus of elasticity (in GPa) for the nonporous material.
E =
i
E =
(b) Calculate the modulus of elasticity (in GPa) for 11.7 vol% porosity.
GPa
i
GPa
Chapter 8 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 8 - What is a ceramic?Ch. 8 - List the major differences between the properties...Ch. 8 - List the major types of ceramics that are useful...Ch. 8 - What do the following materials typically consist...Ch. 8 - Prob. 5RQCh. 8 - Prob. 6RQCh. 8 - Prob. 7RQCh. 8 - Prob. 8RQCh. 8 - Prob. 9RQCh. 8 - Prob. 10RQ
Ch. 8 - Prob. 11RQCh. 8 - Prob. 12RQCh. 8 - Prob. 13RQCh. 8 - Prob. 14RQCh. 8 - Prob. 15RQCh. 8 - Prob. 16RQCh. 8 - Prob. 17RQCh. 8 - Prob. 18RQCh. 8 - Explain why ceramics are weaker in tension than in...Ch. 8 - What are the advantages of cermets? Suggest...Ch. 8 - Explain why the electrical and thermal...Ch. 8 - Prob. 22QLPCh. 8 - Prob. 23QLPCh. 8 - Explain why the mechanical properties of ceramics...Ch. 8 - Explain how ceramics can be made tougher.Ch. 8 - List and describe situations in which static...Ch. 8 - What properties are important in making...Ch. 8 - A large variety of glasses is now available. Why...Ch. 8 - Prob. 29QLPCh. 8 - Prob. 30QLPCh. 8 - Aluminum oxide and PSZ are described as white in...Ch. 8 - Why does the strength of a ceramic part depend on...Ch. 8 - In old castles and churches in Europe, the glass...Ch. 8 - Prob. 34QLPCh. 8 - Prob. 35QLPCh. 8 - Perform an Internet search and determine the...Ch. 8 - Prob. 37QLPCh. 8 - Prob. 38QLPCh. 8 - In a fully dense ceramic, UTSO = 200 MPa and EO =...Ch. 8 - Plot the UTS, E, and k values for ceramics as a...Ch. 8 - What would be the tensile strength and the modulus...Ch. 8 - Prob. 42QTPCh. 8 - Prob. 43QTPCh. 8 - Prob. 44QTPCh. 8 - Prob. 45SDPCh. 8 - Prob. 46SDPCh. 8 - Prob. 47SDPCh. 8 - Prob. 48SDPCh. 8 - Prob. 49SDPCh. 8 - Prob. 50SDPCh. 8 - Conduct a literature search and write a brief...Ch. 8 - Prob. 52SDPCh. 8 - Prob. 53SDPCh. 8 - It has been noted that the strength of brittle...Ch. 8 - Prob. 55SDP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The flexural strength and associated volume fraction porosity for two specimens of the same ceramic material are as follows: Ofs (MPa) P 100 50 i 0.05 (a) Compute the flexural strength for a completely nonporous specimen of this material. 0.20 i MPa (b) Compute the flexural strength for a 0.30 volume fraction porosity. MPaarrow_forwardQuestion 6 During an extrusion process, a chromium billet at a temperature of 1300°C, need to be extruded from a billet diameter of 13 mm to a final diameter of 0.35 mm. An extrusion die are required to withstand the temperature and forces occurring during the process. 6.1 Which ceramic material will you suggest for this application? Provide reasons for your selection. 6.2 If the ceramic material, selected in Question 6.1 have an UTS. = 915 MPa, porosity of 16 % and n = 4, calculate the tensile strength and elastic modulus of the ceramic at room temperature.arrow_forwardI need only 4tharrow_forward
- 9.6 Briefly explain (a) why there may be sig nificant scatter in the fracture strength for some given ceramic material, and (b) why fracture strength increases with decreasing Y lo specimen size.arrow_forwardFigure shows a device for compacting loose material such as powder. A hydraulic pressure p(t) is suddenly applied a constant valde of 23 N/m, and thus is modeled as a dten forsine ftunstien The musses of the piston, the material to be compacted, and the supporting structure have been Included in the ms m The mass m= 10 kg. ce 80 N.s/m and k= 200 N/m The area or the piston is 0.1 m?. Obtain the theoretical response xltl and also verify the response using Matlab. 5.arrow_forwardDiscuss the importance of creep deformation at ambienttemperature for ceramics. How does it compare to metals and polymers?arrow_forward
- State four (4) factors that can influence the variability in fracture strength of ceramic components.arrow_forwardThe graph below gives a plot of force versus total sample length in a tensile test of a polymer. The sample is cylindrical, with an initial diameter of 1 cm and an initial length of 10 cm. From the data below, calculate the modulus, yield stress, yield strain, tensile strength, and % elongation.arrow_forwardWhen a failure data set for a ceramic material processed in a certain facility is analyzed, it is found that the characteristic strength is 327 MPa and the Weibull modulus is 8.75. A nominally identical batch of material processed in a different facility is also tested and found to have essentially the same characteristic strength, but the Weibull modulus is 6.25. At what stress level is the probability of failure equal to 50% for each set of material? What initial conclusion might you draw about the quality control procedures at the two facilities?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Ceramics and Glasses — Lesson 2, Part 1; Author: Ansys Learning;https://www.youtube.com/watch?v=ArDFnBWH-8w;License: Standard Youtube License