a.
Find the roots of the characteristic equation that describes the voltage response of the circuit.
a.
Answer to Problem 1P
The roots of the characteristic equation are
Explanation of Solution
Given data:
The values of resistance, inductance, and capacitance of a parallel RLC circuit are given as follows:
Formula used:
Write the expression for roots of characteristic equation for a parallel RLC circuit as follows:
Here,
Write the expression for Neper frequency as follows:
Here,
Write the expression for resonant radian frequency as follows:
Here,
Calculation:
Substitute
Substitute 12.5 H for
Substitute
The roots are determined as follows:
Conclusion:
Thus, the roots of the characteristic equation are
b.
Find whether the response is over-, under-, or critically damped response.
b.
Answer to Problem 1P
The response for the given system is an over-damped response.
Explanation of Solution
Given data:
The value of capacitance is adjusted to give a neper frequency of
Formula used:
Write the expression for over-damped response for a parallel RLC circuit as follows:
Write the expression for under-damped response for a parallel RLC circuit as follows:
Write the expression for critically damped response for a parallel RLC circuit as follows:
Calculation:
From Part (a), the values of
Substitute
The expression is satisfied. Therefore, the response is the over-damped response. As the Equation (4) is satisfied, it is not required to check the Equations (5) and (6).
Conclusion:
Thus, the response for the given system is an over-damped response.
c.
Calculate the value of resistance that yields a damped frequency of
c.
Answer to Problem 1P
The value of resistance that yields a damped frequency of
Explanation of Solution
Given data:
Formula used:
Write the expression for damped frequency for a parallel RLC circuit as follows:
Calculation:
Rearrange the expression in Equation (7) as follows:
Substitute
Rearrange the expression in Equation (2) as follows:
Substitute
Conclusion:
Thus, the value of resistance that yields a damped frequency of
d.
Find the roots of the characteristic equation for the value of resistance obtained in Part (c).
d.
Answer to Problem 1P
The roots of the characteristic equation are
Explanation of Solution
Calculation:
From Part (c), the value of resistance is obtained as
Substitute
Substitute
The roots are determined as follows:
Conclusion:
Thus, the roots of the characteristic equation are
e.
Calculate the value of resistance
e.
Answer to Problem 1P
The value of resistance that makes the voltage response critically damped is
Explanation of Solution
Calculation:
From Equations (2) and (3), substitute
Rearrange the expression for resistance of the capacitor.
Substitute 12.5 H for
Conclusion:
Thus, the value of resistance that makes the voltage response critically damped is
Want to see more full solutions like this?
Chapter 8 Solutions
EBK ELECTRIC CIRCUITS
Additional Engineering Textbook Solutions
Concepts Of Programming Languages
Starting Out with C++ from Control Structures to Objects (9th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Mechanics of Materials (10th Edition)
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
- find inverse LT for the following functions 1- [0.2s+1.4] s2+1.96. 2. L-1 5s+1 Ls2-25. 4s+32 3. L- L(s2-16).arrow_forwardQ Figurel shows the creation of the Frequency Reuse Pattern Using the Cluster Size K (A) illustrates how i and j can be used to locate a co-channel cell. Juster Cluster CB Cluster 2 X=7(i=2,j=1)arrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Q2. For the transformer shown in Fig. 1. A. Plot the winding connection for the transformer and justify your answer. (4M) B. If the transformer is adopted in 12 pulse diode rectifier, where two-series connected bridge rectifiers are used to supply a highly inductive load with 100 A. (i) Select a suitable turns ratio for the transformer (ii) Plot the line current of each winding ( secondary + primary) showing the current magnitude at each interval (iii) Use Fourier Page 1 of 3 analysis to obtain the Fourier series of all line currents then calculate the THD of the input current. (8=0° (16M) (Y) = 30° Fig. 1 P. I v Iarrow_forwardQ2. For the transformer shown in Fig.1, A. Find the phase shift between the primary and star-connected secondary. B. If the transformer is adopted in a 12-pulse diode rectifier, where a two-series connected bridge rectifier is connected in series and supplies a highly inductive load (i) Select a suitable turns ratio for the transformer (ii) Plot the line current of each winding (secondary + primary). (iii)Using Fourier analysis to obtain the Fourier series of all line currents, then calculate the THD of the input current. (iv) Draw the output voltage of the first and second rectifiers and give the relation of the total output voltage. N2 B C Fig. 1 N3 aarrow_forwardQ2.A. It is planned to use the transformer shown in Fig. 1, a 12-pulse rectifier. Each secondary is connected to three phase controlled bridge rectifier. The two rectifiers are connected in series to supply a highly inductive load. 1. Based on the phasor relationship between different windings. If suitable turns ratio is selected, is it possible to use this transformer to produce 12 pulse output voltage? Show the reason behind your answer. 2. Assuming this arrangement is possible to be used in 12-pulse rectifier, draw the output voltage of the 1st and 2nd rectifier and give the relation of the total output voltage. 3. Use the Fourier analysis to show the harmonics in all line currents of the transformer. A B in C Fig. 1 b la a 2 b.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,