
College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 15CQ
What are the two conditions of equilibrium? What happens if one or the other condition is not satisfied?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V)
ammeter
I =
Chapter 8 Solutions
College Physics
Ch. 8 - Prob. 1RQCh. 8 - Review Question 8.2 Give an example of a situation...Ch. 8 - Review Question 8.3 You read the following...Ch. 8 - Prob. 4RQCh. 8 - Review Question 8.5 You are trying to hold a heavy...Ch. 8 - Review Question 8.6 Why is a ball hanging by a...Ch. 8 - A falling leaf usually flutters while falling....Ch. 8 - Prob. 2MCQCh. 8 - A hammock is tied with ropes between two trees. A...Ch. 8 - Prob. 4MCQ
Ch. 8 - 5. A physics textbook lies on top of a chemistry...Ch. 8 - What does it mean if the torque of a force is...Ch. 8 - Prob. 7MCQCh. 8 - 8. Why do you tilt your body forward when hiking...Ch. 8 - 9. What does it mean if the torque of a 10-N force...Ch. 8 - What is the maximum angle to the horizontal you...Ch. 8 - Prob. 11MCQCh. 8 - 12. Is it possible for an object not to be in...Ch. 8 - Explain the meaning of torque so that a friend not...Ch. 8 - Prob. 14CQCh. 8 - What are the two conditions of equilibrium? What...Ch. 8 - Give three examples of situations in which an...Ch. 8 - The force that the body muscles exert on bones...Ch. 8 - A ladder leans against a wall. Construct a force...Ch. 8 - Using a crowbar, a person can remove a nail by...Ch. 8 - 20. Is it more difficult to do a sit-up with your...Ch. 8 - Sit on a chair with your feet straight down at the...Ch. 8 - Can you balance the tip of a wooden ruler...Ch. 8 - Try to balance a sharp wooden pencil on your...Ch. 8 - 24. Design a device that you can use to...Ch. 8 - Explain why it is easier to keep your balance...Ch. 8 - A carpenters trick to keep nails from bending when...Ch. 8 - Determine the torques about the axis of rotation P...Ch. 8 - 2. Three 200-N forces are exerted on the beam...Ch. 8 - 3. * A 2.0-m-long, 15-kg ladder is resting against...Ch. 8 - Figure P8.4 shows two different situations where...Ch. 8 - Three friends tie three ropes in a knot and pull...Ch. 8 - Prob. 6PCh. 8 - * Kate joins Jim, Luis, and Adrienne in the...Ch. 8 - You hang a light in front of your house using an...Ch. 8 - * Find the values of the forces the ropes exert on...Ch. 8 - Prob. 10PCh. 8 - Determine the masses m1 and m2 of the two objects...Ch. 8 - * Lifting an engine You work in a machine shop and...Ch. 8 - 13. * More lifting You exert a 630-N force on rope...Ch. 8 - Prob. 14PCh. 8 - 15. * Tightrope walking A tightrope walker wonders...Ch. 8 - 16. * Lifting patients An apparatus to lift...Ch. 8 - 17. A father (80 kg), mother (56 kg), daughter (16...Ch. 8 - Prob. 18PCh. 8 - * You place a 3.0-m-long board symmetrically...Ch. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - 23. EST Compare the two different designs of...Ch. 8 - Ray decides to paint the outside of his uncles...Ch. 8 - 25. * A 2.0-m-long uniform beam of mass 8.0 kg...Ch. 8 - * A uniform beam of length / and mass m supports a...Ch. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - 31. * An 80-kg clown sits on a 20-kg bike on a...Ch. 8 - s center of mass? (Hint: You can think of cutting...Ch. 8 - Leg support A persons broken leg is kept in place...Ch. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - * If the force F shown in Figure P8.35 is 840 N...Ch. 8 - Prob. 37PCh. 8 - 38. * You decide to hang another plant from a...Ch. 8 - Prob. 39PCh. 8 - * What mechanical work must you do to lift a log...Ch. 8 - 41. * A 70-g meter stick has a 30-g piece of...Ch. 8 - * You are trying to tilt a very tall refrigerator...Ch. 8 - Prob. 43PCh. 8 - 44. * You have an Atwood machine (see Figure 4.9 )...Ch. 8 - * EST You stand sideways in a moving train....Ch. 8 - 46. EST Your hand holds a liter of milk (mass...Ch. 8 - EST Body torque You hold a 4.0-kg computer....Ch. 8 - Prob. 48GPCh. 8 - 49. BIO Using triceps to push a table A man pushes...Ch. 8 - Prob. 50GPCh. 8 - Prob. 51GPCh. 8 - Prob. 52GPCh. 8 - 53.* BIO Dumbbell lift IA woman lifts a 3.6-kg...Ch. 8 - s shoulder joint exerts on her humerus.Ch. 8 - Prob. 55GPCh. 8 - * Eiichi has purchased an adjustable hand grip to...Ch. 8 - 57. *BIO While browsing books on neurophysiology,...Ch. 8 - 58. ** Touch detector You have two force sensors...Ch. 8 - * An 80-kg person stands at one end of a 130-kg...Ch. 8 - 61. EST Two people (50 kg and 75 kg) holding hands...Ch. 8 - Prob. 62GPCh. 8 - BIO Muscles work in pairs Skeletal muscles produce...Ch. 8 - BIO Muscles work in pairs Skeletal muscles produce...Ch. 8 - BIO Muscles work in pairs Skeletal muscles produce...Ch. 8 - BIO Muscles work in pairs Skeletal muscles produce...Ch. 8 - BIO Improper lifting and the back A careful study...Ch. 8 - BIO Improper lifting and the back A careful study...Ch. 8 - BIO Improper lifting and the back A careful study...Ch. 8 - BIO Improper lifting and the back A careful study...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
Modified True/False 1. _____ Biofilms of microorganisms form in aquatic environments only.
Microbiology with Diseases by Body System (5th Edition)
When you rub your cold hands together, the friction between them results in heat that warms your hands. Why doe...
Anatomy & Physiology (6th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Examine the following diagrams of cells from an organism with diploid number 2n = 6, and identify what stage of...
Genetic Analysis: An Integrated Approach (3rd Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY