Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 14RQ
To determine
Why astronomers don’t know the inclination of a spectroscopic binary? And how do they know the inclination of the eclipsing binary?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Algol binary system consists of a 3.7 Msun star and a 0.8 Msun star with an orbital period of 2.87 days. Using Newton’s version of Kepler’s Third Law, calculate the distance, a, between the two stars. Compare that to the size of Betelgeuse (you’ll need to look that up).
Newton’s Version of Kepler’s Law: (M1 + M2) P2 = (4p2 /G) a3
Rearrange the equation to solve for a. Pi, p, is equal to 3.14. IMPORTANT NOTE: Google the value of G (the Universal Gravitational Constant) or look it up in your text. NOTICE THE UNITS. You must convert every distance and time in your equation to the same units, otherwise, you’ll get an incorrect answer. That means you must convert distances to meters, solar masses to kilograms, and time to seconds. When you compare your value to the size of Betelgeuse, it will also help that they are in the same units.
"51 Pegasi" is the name of the first normal star (besides the Sun) around which a planet was discovered. It is in the constellation Pegasus the horse. Its parallax is measured to be 0.064 arcsec.
a. What is its distance from us?
b. The apparent brightness is 1.79 × 10-10 J/(s·m2 ). What is the luminosity? How does that compare with that of the Sun? Look up the temperature: how do
A star has a measured radial velocity of 300 km/s.
If you measure the wavelength of a particular
spectral line of Hydrogen as 657.18 nm, what was
the laboratory wavelength (in nm) of the line?
(Round your answer to at least one decimal place.)
nm
Which spectral line does this likely correspond to?
Balmer-alpha (656.3 nm)
Balmer-beta (486.1 nm)
Balmer-gamma (434.0 nm)
Balmer-del ta (410.2 nm)
Chapter 8 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 8 - Prob. 1RQCh. 8 - Why was the Hipparcos satellite able to make more...Ch. 8 - Prob. 3RQCh. 8 - Prob. 4RQCh. 8 - Prob. 5RQCh. 8 - Prob. 6RQCh. 8 - Prob. 7RQCh. 8 - Prob. 8RQCh. 8 - Prob. 9RQCh. 8 - Prob. 10RQ
Ch. 8 - Prob. 11RQCh. 8 - Prob. 12RQCh. 8 - Prob. 13RQCh. 8 - Prob. 14RQCh. 8 - Prob. 15RQCh. 8 - Prob. 16RQCh. 8 - Prob. 17RQCh. 8 - Prob. 18RQCh. 8 - Prob. 19RQCh. 8 - How Do We know? In what way does accumulation of...Ch. 8 - Prob. 1DQCh. 8 - Can you think of classification systems used to...Ch. 8 - Prob. 3DQCh. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Prob. 5PCh. 8 - Prob. 6PCh. 8 - Prob. 7PCh. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - Prob. 1LTLCh. 8 - Prob. 2LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why do you think astronomers have suggested three different spectral types (L, T, and Y) for the brown dwarfs instead of M? Why was one not enough?arrow_forwardAs seen from Earth, the Sun has an apparent magnitude of about 26.7 . What is the apparent magnitude of the Sun as seen from Saturn, about 10 AU away? (Remember that one AU is the distance from Earth to the Sun and that the brightness decreases as the inverse square of the distance.) Would the Sun still be the brightest star in the sky?arrow_forward15: A star has a parallax angle of 0.0270 arcseconds and an apparent magnitude of 4.641. What is the distance to this star? Answer: 37 16: What is the absolute magnitude of this star? Answer:1.8 17: Is this star more or less luminous than the Sun? Answer "M" for More luminous or "L" for Less luminous. (HINT: the absolute magnitude of the Sun is 4.8) Answer: M 18: What is the luminosity of this star? (HINT: The luminosity of the Sun is 3.85×1026 W.) Please answer question #18, #15-17 are correct, the photos provide the work for them.arrow_forward
- Star A and Star B are a bound binary at a distance of 20 pc from the Earth. Their separation is 30 AU. Star A has a mass twice that of Star B. The orbital period of the binary is 100 years. Assume the stars orbit in circular orbits. a. What is the parallax of Star A, in units of arcsec? Assume parallax is measured from the Earth. For part a, ignore the presence of the binary companion. b. What is the angular separation we would observe between Star A and Star B, in units of arcsec? If we compare multiple images of this star system taken across different months and years, which source of motion will be the dominant effect? What is the total mass of the binary system (combined mass of Star A and Star B)? Provide your answer in both kg and solar masses. c. d. What is the distance from Star A to the center of mass of the binary system?arrow_forward#1 Harrow_forwardThe figure below shows the radial velocity of a star plotted as a function of time over the course of 20 days. Where is the planet in its orbit around the star when the star's radial velocity is 18 km/s? How do I determine this?arrow_forward
- Based on your radial velocity curve, record the orbital period P in days. This is the time elapsed between two subsequent peaks or troughs on the curve. P = _________________________ days Based on your radial velocity curve, record the maximum radial velocity, vmax, of the star in meters per second (m/s).vmax = _________________________ m/sarrow_forwardIn a binary star system, the average separation between the stars is 4.0 AU, and their orbital period is 5.0 years. What is the sum of their two masses? The average distance of Star A from the center of mass is four times that of Star B. What are their individual masses?arrow_forwardA star has a measured radial velocity of 100 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 486.42 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.) Which spectral line does this likely correspond to? Balmer-alpha (656.3 nm) Balmer-beta (486.1 nm) Balmer-gamma (434.0 nm) Balmer-delta (410.2 nm)arrow_forward
- Asap plzzzarrow_forwardYou measure a star to have a parallax angle of 0.12 arc-seconds. What fraction of a degree is this? By how many times would you have to magnify this effect for it to be visible to the human eye? (The limit of human vision is about 1 arc-minute) What is the distance to this star in parsecs? What is the distance to this star in light years What is the parallax angle of a different star that is twice as far away as the star from the previous problems? [answer in arc-seconds without including the unit]arrow_forwardAn O8 V star has an apparent visual magnitude of +5. Use the method of spectroscopic parallax to estimate the distance to the star (in pc). (Hints: Refer to one of the H–R diagrams in the chapter, and use the magnitude–distance formula, d = 10(mV − MV + 5)/5 where d is the distance in parsecs, mV and MV are the apparent and absolute visual magnitude respectively.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax