Chemistry
Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8, Problem 146AP

The hydroxyl radical ( OH ) plays an important role in atmospheric chemistry. It is highly reactive and has a tendency to combine with an H atom from other compounds, causing them to break up. Thus OH is sometimes called a "detergent" radical because it helps to clean up the atmosphere. (a) Draw the Lewis structure for the radical. (b) Refer to Table 8.6 and explain why the radical has a high affinity for H atoms. (c) Estimate the enthalpy change for the following reaction:

OH ( g )  + CH 4 ( g )   CH 3 ( g )  + H 2 O ( g )

(d) The radical is generated when sunlight hits water vapor. Calculate the maximum wavelength (in nm) required to break an O—H bond in H 2 O .

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

The Lewis structure of hydroxyl radical is to be drawn; the reason for radical’s high affinity for H atoms, enthalpy change for the given reaction, and the maximum wavelength required to break given bond in given compound are to be calculated.

Concept introduction:

The standard enthalpy of a reaction is the enthalpy change that occurs under standard conditions.

The standard enthalpy of a reaction is determined using the equation as given below:

ΔH°rxn= nΔHf°(products) mΔHf°(reactants)

Here, the stoichiometric coefficients are represented by m for reactants and n for products, and enthalpy of formation at standard conditions is represented by ΔHf°.

The standard enthalpy of formation is the amount of heat change that arises as a result of one mole of compound formation at the standard states from its integral elements.

The value of enthalpy of formation of an element is zero at its most stable state.

Bond Enthalpy is the energy required to break a bond of 1 mole of a substance. It is given in KJ/mol.

The Lewis dot symbols contain dots, which give information about valence electrons.

According to Planck’s energy–frequency law, energy is given by:

E=hcλ

Here, h is Planck’s constant, c is speed of light, and λ is wavelength of radiation.

h = 6.626×1034Jsc = 3.0×108 m/s

Answer to Problem 146AP

Solution:

(a)

Chemistry, Chapter 8, Problem 146AP , additional homework tip  1

(b) The reason for radical OH to have a strong affinity toward hydrogen is the bond enthalpy value of oxygen–hydrogen bond, which is very high.

(c) 46 KJ/mol

(d) 260 nm

Explanation of Solution

a) Lewis structure for radical (OH)

The skeletal structure for OH radical is as follows:

OH

The number of valence electrons is as follows:

n=(O atom)+(H atoms)=6+1=7

Now, only two electrons are used in bond formation. So, the number of remaining electrons is 5.

The oxygen atom has only one electron used in bond formation, so it will have 5 remaining electrons.

So, the Lewis structure for OH radical is as follows:

Chemistry, Chapter 8, Problem 146AP , additional homework tip  2

b) The radical has high affinity for H atom, refer table 8.6.

From table 8.6, the bond enthalpy of oxygen–hydrogen bond: BE(OH)=460 kJ/mol

Since the value of oxygen–hydrogen bond is very high, the radical OH has very strong affinity toward hydrogen to complete its octet.

Hence, the reason for radical OH to have a strong affinity toward hydrogen is the high bond enthalpy value of oxygen–hydrogen bond.

c) The enthalpy change for the following given reaction:

OH(g)+CH4(g)CH3(g)+H2O(g)

The enthalpy of reaction can be calculated as follows:

ΔH°rxn= BE(reactants) BE(products)

From table 8.6, the enthalpy of formation values are as follows:

BE[ CH ]=414 KJ/molBE[ OH ]=460 KJ/mol

Now, the standard enthalpy of the given reaction is as follows:

ΔH°rxn= { 4BE[ CH ] + BE[ OH ]  }{ 3BE[ CH ]+ 2BE[ OH ] }            =  { BE[ CH ] }{ BE[ OH ] }

Substitute 414 KJ/mol for BE[ CH ] and 460 KJ/mol for BE[ OH ] in the above equation

ΔH°rxn=[ 414 KJ/mol ][ 460 KJ/mol ]=46 KJ/mol

Hence, the enthalpy of the given reaction from the bond enthalpy values is 46 KJ/mol.

d) The maximum wavelength (in nm) required to break an OH bond in water.

From table 8.6, the bond enthalpy for oxygen–hydrogen bond is as follows:

BE(OH)=460 kJ/mol

This can be written as the energy of oxygen–hydrogen bond as

E(OH)=460×103 J/mol×16.022×1023 bonds/mol=460×1036.022×1023 J/bonds=76.39×1020 J/bonds=7.64×1019 J/bonds

According to Planck’s energy–frequency law, energy is given as follows:

E=hcλ

This can be written as follows:

λ=hcE

Substitute c for 3×108m/s, 6.626×1034Js for h, and 7.64×1019 J for E in the above equation

λ=(6.626×1034Js) ×3×108 m/s(7.64×1019 J)=19.9×10267.64×1019 m=2.6×107 m=260 nm

Hence, the maximum wavelength required to break the oxygen–hydrogen bond is 2.6×107 nm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Use (a) electron configuration (b) orbital diagram and (c) Lewis symbols to depict the formation of aluminum chloride from the reaction between aluminum and chlorine atoms. (d) How many electrons are transferred? (e) Which atom loses electrons in the reaction?
A resident expert on electronegativity comes up to visit with you. He makes two claims (seen below) about electronegativity with relation to covalent bonding. Is the expert correct or can you refute him with your knowledge of electronegativity? (a) If a diatomic molecule is made up of atoms X and Y, which have different electronegativities, the molecule must be polar.     (b) The farther two atoms are apart in a bond, the larger the dipole moment will be.
In the vapor phase, BeCl2 exists as a discrete molecule. (a) Draw the Lewis structure of this molecule, using only single bonds. Does this Lewis structure satisfy the octet rule? (b) What other resonance structures are possible that satisfy the octet rule? (c) On the basis of the formal charges, which Lewis structure is expected to be dominant for BeCl2?  

Chapter 8 Solutions

Chemistry

Ch. 8.2 - 8.2.1 Will the lattice energy of KF be larger or...Ch. 8.2 - 8.2.2 Using the following data, calculate the...Ch. 8.2 - 8.2.3 Lattice energies are graphed for three...Ch. 8.3 - Practice ProblemATTEMPT Using data from Figures...Ch. 8.3 - Prob. 1PPBCh. 8.3 - Prob. 1PPCCh. 8.4 - Practice Problem ATTEMPT Classify the following...Ch. 8.4 - Prob. 1PPBCh. 8.4 - Prob. 1PPCCh. 8.4 - In which of the following molecules are the bonds...Ch. 8.4 - Using data from Table 8.5, calculate the magnitude...Ch. 8.4 - Prob. 3CPCh. 8.4 - Prob. 4CPCh. 8.5 - Prob. 1PPACh. 8.5 - Prob. 1PPBCh. 8.5 - Prob. 1PPCCh. 8.5 - Identify the correct Lewis structure for formic...Ch. 8.5 - Identity the correct Lewis structure for hydrogen...Ch. 8.6 - Prob. 1PPACh. 8.6 - Prob. 1PPBCh. 8.6 - Prob. 1PPCCh. 8.6 - Determine the formal charges on H, C, and N,...Ch. 8.6 - 8.6.2 Which of the Lewis structures shown is most...Ch. 8.7 - Prob. 1PPACh. 8.7 - Practice ProblemBUILD Draw the Lewis structure for...Ch. 8.7 - Practice Problem CONCEPTUALIZE Of the three Lewis...Ch. 8.7 - Indicate which of the following are resonance...Ch. 8.7 - 8.7.2 How many resonance structures can be drawn...Ch. 8.8 - Prob. 1PPACh. 8.8 - Prob. 1PPBCh. 8.8 - Practice Problem CONCEPTUALIZE The hypothetical...Ch. 8.8 - In which of the following species does the central...Ch. 8.8 - Prob. 2CPCh. 8.8 - In which species does the central atom obey the...Ch. 8.8 - 8.8.4 How many lone pairs are there on the central...Ch. 8.9 - Prob. 1PPACh. 8.9 - Practice ProblemBUILD Use Lewis structures and...Ch. 8.9 - Prob. 1PPCCh. 8.9 - 8.9.1 Use data from Table 8.6 to estimate for the...Ch. 8.9 - Use data from Table 8.6 to estimate Δ H rxn for...Ch. 8.9 - Use bond enthalpies to determine Δ H rxn for the...Ch. 8.9 - Prob. 4CPCh. 8.10 - Practice ProblemATTEMPT Draw all possible...Ch. 8.10 - Prob. 1PPBCh. 8.10 - Practice ProblemCONCEPTUALIZE The Lewis structure...Ch. 8.11 - Prob. 1PPACh. 8.11 - Prob. 1PPBCh. 8.11 - Prob. 1PPCCh. 8.12 - Prob. 1PPACh. 8.12 - Prob. 1PPBCh. 8.12 - Prob. 1PPCCh. 8.13 - Prob. 1PPACh. 8.13 - Practice Problem BUILD Using the following...Ch. 8.13 - Prob. 1PPCCh. 8 - 8.1 Which of the following atoms must always obey...Ch. 8 - Prob. 2KSPCh. 8 - Prob. 3KSPCh. 8 - Prob. 4KSPCh. 8 - What is a Lewis dot symbol? What elements do we...Ch. 8 - Use the second member of each group from Group 1A...Ch. 8 - Prob. 3QPCh. 8 - 8.4 Write Lewis dot symbols for the following...Ch. 8 - Write Lewis dot symbols for the following atoms...Ch. 8 - Prob. 6QPCh. 8 - Prob. 7QPCh. 8 - Name five metals and five nonmetals that are very...Ch. 8 - Prob. 9QPCh. 8 - Prob. 10QPCh. 8 - Prob. 11QPCh. 8 - The term molar mass was introduced in Chapter 3....Ch. 8 - Prob. 13QPCh. 8 - Prob. 14QPCh. 8 - Prob. 15QPCh. 8 - Explain how the lattice energy of an ionic...Ch. 8 - Prob. 17QPCh. 8 - Prob. 18QPCh. 8 - 8.19 Use the Born-Haber cycle outlined in Section...Ch. 8 - Calculate the lattice energy of CaCl 2 . Use data...Ch. 8 - An ionic bond is formed between a cation A + and...Ch. 8 - Prob. 22QPCh. 8 - Use Lewis dot symbols to show the transfer of...Ch. 8 - Write the Lewis dot symbols of the reactants and...Ch. 8 - 8.25 Describe Lewis’s contribution to our...Ch. 8 - Prob. 26QPCh. 8 - Prob. 27QPCh. 8 - Prob. 28QPCh. 8 - Prob. 29QPCh. 8 - Prob. 30QPCh. 8 - Prob. 31QPCh. 8 - Prob. 32QPCh. 8 - Prob. 33QPCh. 8 - Define electronegativity, and explain the...Ch. 8 - Prob. 35QPCh. 8 - Prob. 36QPCh. 8 - Prob. 37QPCh. 8 - Using information in Table 8.5. calculate the...Ch. 8 - List the following bonds in order of increasing...Ch. 8 - Classify the following bonds as covalent, polar...Ch. 8 - 8.41 Classify the following bonds as covalent,...Ch. 8 - 8.42 List the following bonds in order of...Ch. 8 - Prob. 43QPCh. 8 - Prob. 44QPCh. 8 - Prob. 45QPCh. 8 - Prob. 46QPCh. 8 - Draw Lewis structures for the following molecules...Ch. 8 - Draw Lewis structures for the following molecules:...Ch. 8 - Prob. 49QPCh. 8 - Prob. 50QPCh. 8 - 8.51 Draw Lewis structures for the following ions:...Ch. 8 - Draw Lewis structures for the following ions: (a)...Ch. 8 - Prob. 53QPCh. 8 - Prob. 54QPCh. 8 - Prob. 55QPCh. 8 - Prob. 56QPCh. 8 - Prob. 57QPCh. 8 - 8.58 Draw three resonance structures for the...Ch. 8 - Prob. 59QPCh. 8 - Prob. 60QPCh. 8 - Draw three reasonable resonance structures for the...Ch. 8 - Draw three resonance structures for the molecule N...Ch. 8 - Prob. 63QPCh. 8 - Prob. 64QPCh. 8 - Prob. 65QPCh. 8 - Prob. 66QPCh. 8 - Prob. 67QPCh. 8 - Prob. 68QPCh. 8 - Prob. 69QPCh. 8 - The AlI 3 molecule has an incomplete octet around...Ch. 8 - Prob. 71QPCh. 8 - Prob. 72QPCh. 8 - 8.73 Write a Lewis structure for Does this...Ch. 8 - Prob. 74QPCh. 8 - Prob. 75QPCh. 8 - 8.76 Draw two resonance structures for the bromate...Ch. 8 - Prob. 77QPCh. 8 - What is bond enthalpy? Bond enthalpies of...Ch. 8 - Prob. 79QPCh. 8 - Prob. 80QPCh. 8 - Prob. 81QPCh. 8 - Prob. 82QPCh. 8 - For the reaction 2 C 2 H 6 ( g ) + 7 O 2 ( g ) → 4...Ch. 8 - Prob. 84QPCh. 8 - 8.85. Use average bond enthalpies from Table 8.6...Ch. 8 - Prob. 86APCh. 8 - Prob. 87APCh. 8 - Prob. 88APCh. 8 - Prob. 89APCh. 8 - Prob. 90APCh. 8 - 8.91 Describe some characteristics of an ionic...Ch. 8 - Prob. 92APCh. 8 - Prob. 93APCh. 8 - Prob. 94APCh. 8 - Prob. 95APCh. 8 - Prob. 96APCh. 8 - Prob. 97APCh. 8 - Prob. 98APCh. 8 - Prob. 99APCh. 8 - Prob. 100APCh. 8 - Prob. 101APCh. 8 - Prob. 102APCh. 8 - Prob. 103APCh. 8 - Prob. 104APCh. 8 - Which of the following species are isoelectronic:...Ch. 8 - Prob. 106APCh. 8 - 8.107 Draw two resonance structures for each...Ch. 8 - The following species have been detected in...Ch. 8 - The amide ion ( NH 2 − ) is a Brø�nsted base. Use...Ch. 8 - Prob. 110QPCh. 8 - The triiodide ion ( I 3 − ) in which the I atoms...Ch. 8 - Prob. 112APCh. 8 - In 1999, an unusual cation containing only...Ch. 8 - Prob. 114APCh. 8 - Prob. 115APCh. 8 - Prob. 116APCh. 8 - In the gas phase, aluminum chloride exists as a...Ch. 8 - Prob. 118APCh. 8 - Calculate Δ H º for the reaction H 2 ( g ) + I 2 (...Ch. 8 - Draw Lewis structures for the following organic...Ch. 8 - Prob. 121APCh. 8 - Prob. 122APCh. 8 - Prob. 123APCh. 8 - Write three resonance structures for (a) the...Ch. 8 - Prob. 125APCh. 8 - Prob. 126APCh. 8 - Prob. 127APCh. 8 - Prob. 128APCh. 8 - Prob. 129APCh. 8 - Prob. 130APCh. 8 - Prob. 131APCh. 8 - Among the common inhaled anesthetics are:...Ch. 8 - Prob. 133QPCh. 8 - Prob. 134QPCh. 8 - Prob. 135QPCh. 8 - 8.136 Using this and data from Appendix 2,...Ch. 8 - Prob. 137QPCh. 8 - Prob. 138APCh. 8 - Prob. 139APCh. 8 - Prob. 140APCh. 8 - Prob. 141APCh. 8 - Prob. 142APCh. 8 - Prob. 143APCh. 8 - Although nitrogen dioxide ( NO 2 ) is a stable...Ch. 8 - 8.145 The chlorine nitrate molecule is believed...Ch. 8 - The hydroxyl radical ( OH ) plays an important...Ch. 8 - Prob. 147APCh. 8 - Prob. 148APCh. 8 - Prob. 1SEPPCh. 8 - 2. Use formal charges to choose the best of the...Ch. 8 - Prob. 3SEPPCh. 8 - Prob. 4SEPP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY