From the given processes, which of the process would double the pressure should be determined. Concept introduction: By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law . According to ideal gas law, PV=nRT Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0 .08206L×atm/K×mol ) T = temperature in kelvins By knowing any three of these properties, the state of a gas can be simply identified, Pressure of the gas can be determined by, P = n R T V
From the given processes, which of the process would double the pressure should be determined. Concept introduction: By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law . According to ideal gas law, PV=nRT Where, P = pressure in atmospheres V= volumes in liters n = number of moles R =universal gas constant ( 0 .08206L×atm/K×mol ) T = temperature in kelvins By knowing any three of these properties, the state of a gas can be simply identified, Pressure of the gas can be determined by, P = n R T V
Solution Summary: The author explains that by combining the three gaseous laws, the pressure and number of moles of gas are directly proportional.
Definition Definition Number of atoms/molecules present in one mole of any substance. Avogadro's number is a constant. Its value is 6.02214076 × 10 23 per mole.
Chapter 8, Problem 143CWP
Interpretation Introduction
Interpretation: From the given processes, which of the process would double the pressure should be determined.
Concept introduction:
By combining the three gaseous laws namely Boyle’s law, Charles’s law and Avogadro’s law a combined gaseous equation is obtained. This combined gaseous equation is called Ideal gas law.
According to ideal gas law,
PV=nRT
Where,
P = pressure in atmospheres
V= volumes in liters
n = number of moles
R =universal gas constant (
0.08206L×atm/K×mol)
T = temperature in kelvins
By knowing any three of these properties, the state of a gas can be simply identified,
NH3 reacts with boron halides (BX3 where X = F, Cl, Br, or I) to form H3N-BX3 complexes.Which of these complexes will have the strongest N-B bond? Justify your answer
3Help
1Help
Chapter 8 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.