Concept explainers
Shell-and-tube heat exchangers with hundred of tubes housed in a shell are commonly used in practice for heat transfer between two fluids. Such a heat exchanger used in au active solar liot-watet system transfers heat froiui a water-atnifreeze solution flowing through the shell and the solar collector to fresh water flowing through the tubes at an average temperature of 64ƯC al a ¡‘ale of I S L’s. The heat exchangei’ contains 80 biass tubes I ciii in immer diameter and 1.5 in in length. Disregaidiiig inkt. exit, and header losses. detennine tite pressure drop across a single itibe and the pmnping power required by the rube-side finid of the heat exchaiiger.
After operating a long time. I-tutu-thick scale builds up on the inner surfaces with an equivalent rougluiess of 0.4 mm.
For the saine pwnplng power input. detennine tIme percent reductiomi in the flow rate of water through the tubes.
The pressure drop across a single tube.
The plumbing power required by the tube side fluid of the heat exchanger.
The percent reduction in the flow rate of water through the tubes.
Answer to Problem 136P
The pressure drop across a single tube is
The plumbing power required by the tube side fluid of the heat exchanger is
The percent reduction in the flow rate of water through the tubes is
Explanation of Solution
Given information:
The average temperature of water flowing through the tubes is
Write the expression for the average velocity.
Here, volume flow rate of fluid is
Write the expression of total area of tubes.
Here, the number of tube is
Write the expression for the Reynolds number.
Here, the density of fluid is
Write the expression for the Colebrook equation.
Here, the friction factor is
Write the expression for the pressure drop.
Here, the friction factor is
Write the expression for the pumping power.
Here, volume flow rate of fluid is
Write the expression of percentage reduction in flow rate.
Here, the given flow rate is
Substitute
Substitute
Refer table 3E "Properties of water" to find the dynamic viscosity of water corresponding to
Substitute,
Refer Table 8-2 "Equivalence roughness values for new commercial pipes" to find the value of roughness is
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute,
Substitute
Substitute
Substitute
There are five Equations (VIII), (IX), (X), (XI) and (XII) with five unknowns
Use the trial and error method to find the values.
Assume
Substitute
Substitute
Substitute
Substitute
Substitute
By substituting
Now use
Substitute
Substitute
Substitute
Substitute
Substitute
Now, By substituting
The values of
The value of
The value of
The value of
And the value of
Substitute
Conclusion:
The pressure drop across a single tube is
The plumbing power required by the tube side fluid of the heat exchanger is
The percent reduction in the flow rate of water through the tubes is
Want to see more full solutions like this?
Chapter 8 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
- A vertical force of F = 3.4 kN is applied to the hook at A as shown in. Set d = 1 m. Part A 3 m 3m 0.75 m 1.5 m. Determine the tension in cable AB for equilibrium. Express your answer to three significant figures and include the appropriate units. FAB= Value Submit Request Answer Part B Units ? Determine the tension in cable AC for equilibrium. Express your answer to three significant figures and include the appropriate units. FAC = Value Submit Request Answer Part C ? Units Determine the tension in cable AD for equilibrium. Express your answer to three significant figures and include the appropriate units.arrow_forwardConsider the heat engine operating at steady state between the two thermal reservoirs shown at the right while producing a net power output of 700 kW. If 1000 kW of heat (Q̇H) is transferred to the heat engine from a thermal reservoir at a temperature of TH = 900 K, and heat is rejected to a thermal reservoir at a temperature of TL = 300 K, is this heat engine possible? Can you answer this question for me and show all of the workarrow_forward1.12 A disk of constant radius r is attached to a telescoping rod that is extending at a constant rate as shown in Fig. P1.12. Both the disk and the rod are rotating at a constant rate. Find the inertial velocity and acceleration of point P at the rim of the disk. ท2 L 0 SS P α e 0 O' êL Fig. P1.12 Rotating disk attached to telescoping rod. 60 LLarrow_forward
- Two different options A and B with brake pads for disc brakes are connected to the rope drum. The diameter of the rope drum is 150 mm. What distance must the pads B be at from the center of rotation to cover the same distance as A?A B- Width 50 mm - Width 60 mm- Evidence center 120mm - Construction power 900 N from rotation center.- Maintains a weight of 200 kgwhen the installation force is 1.4kN (μ is missing from the data)M=μF(Ry-Ri)Right answer R=187 mmarrow_forwardAssume the xy plane is level ground, and that the vertical pole shown in the diagram lies along the z-axis with its base at the origin. If the pole is 5 m tall, and a rope is used to pull on the top of the pole with a force of 400 N as shown, determine the magnitudes of the parallel and perpendicular components of the force vector with respect to the axis of the post i.e. with respect to the z-axis.arrow_forward4-1 Q4: Q5: (20 Marks) Find √48 using False Position Method with three iterations. Hint: the root lies between 3 and 4. (20 Marks)arrow_forward
- Determine the angle between vectors FA and FB that is less than 180 degrees. FA is the vector drawn from the origin to point A (-4, 4, 2) while FB is the vector drawn from the origin to point B (3, 1, -3).arrow_forwardFind the resultant force vector from adding F1, F2 and F3, where … F1 = {-8i+10j-32k} N F2 is 40 N in magnitude with coordinate direction angles α, β, and γ, of 45, 120 and 60 degrees, respectively and F3 is 22 N in magnitude with transverse and azimuth angles of 65 and 40 degrees, respectively Express your final answer as a Cartesian vector as well as a magnitude with angles.arrow_forwardA 2-kW resistance heater wire with thermal conductivity of k=20 W/mK, a diameter of D=4mm, and a length of L=0.9m is used to boil water. If the outer surface temp of the resistance wire is Ts=110 degrees C, determine the temp at the center of the wire.arrow_forward
- A flat-plate solar collector is used to heat water by having water flow through tubes attached at the back of the thin solar absorber plate. The absorber plate has emmisssivity and an absorptivity of 0.9. The top surface where x=0 temp of the absorber is T0=35 degrees C, and solar radiation is incident on the basorber at 500 W/m^2 with a surrounding temp of 0 degrees C. The convection heat transfer coefficient at the absorber surface is 5 W/m^2 K, while the ambient temp is 25 degrees C. Show that the variation of the temp in the basorber plate can be expressed as T(x)=-(q0/k)x+T0, and determine net heat flux, q, absorbed by solar collector.arrow_forwardUsing properties of a saturated water, explain how you would determine the mole fraction of water vapor at the surface of a lake when the temp of the lake surface and the atmospheric pressure are specified.arrow_forwardConsider a glass of water in a room at 15 degrees C and 97 kPa. If the relative humidity in the room is 100 percent and the water and the air are in thermal and phase equilibrium, determine the mole fraction of the water vapor in the air and the mole fraction of air in the water.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning