![Bundle: Organic Chemistry, 9th, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card](https://www.bartleby.com/isbn_cover_images/9781305701021/9781305701021_largeCoverImage.gif)
Concept explainers
a) Cholesterol, C27H46O
Interpretation:
The degree of unsaturation in cholesterol, C27H46O, is to be calculated.
Concept introduction:
The degree of unsaturation is equal to the number of rings and/or multiple bonds present in the molecule. The general formula of
To calculate:
The degree of unsaturation in cholesterol with molecular formula C27H46O.
![Check Mark](/static/check-mark.png)
Answer to Problem 67AP
The degree of unsaturation in cholesterol with molecular formula C27H46O is 5.
Explanation of Solution
Molecular formula of cholesterol is C27H46O. If oxygens are ignored the formula becomes C27H46. A hydrocarbon with twenty seven carbons will have the molecular formula C27H56. The compound given has five pairs of hydrogens (H56-H46=10) less. So its degree of unsaturation is 5.
The degree of unsaturation in cholesterol with molecular formula C27H46O is 5.
b) DDT, C14H9Cl5
Interpretation:
The degree of unsaturation in DDT, C14H9Cl5 is to be calculated and to draw five possible structures with this formula.
Concept introduction:
The degree of unsaturation is equal to the number of rings and/or multiple bonds present in the molecule. The general formula of alkanes is CnH2n+2. Knowing this relationship and by working backward the degree of unsaturation in a molecule can be calculated. Each ring or a double bond in a molecule corresponds to a loss of two hydrogens from the formula of alkane. If the compound contains halogens, oxygen and/or nitrogen, then the number of halogens is to be added to the number of hydrogens, the number of oxygens to be ignored and number of the nitrogens is to be subtracted, in arriving at an equivalent hydrocarbon formula.
To calculate:
The degree of unsaturation in DDT with molecular formula C14H9Cl5.
![Check Mark](/static/check-mark.png)
Answer to Problem 67AP
The degree of unsaturation in DDT with molecular formula C14H9Cl5 is 8.
Explanation of Solution
Molecular formula of DDT is C14H9Cl5. Adding five hydrogens for five chlorines, we get the formula as C14H14. A hydrocarbon with fourteen carbons will have the molecular formula C14H30. The compound given has eight pairs of hydrogens (H30-H14=16) less. So its degree of unsaturation is 8.
The degree of unsaturation in DDTwith molecular formula C14H9Cl5 is 8.
c) Prostaglandin E1, C20H34O5
Interpretation:
The degree of unsaturation in prostaglandin E1, C20H34O5 is to be calculated.
Concept introduction:
The degree of unsaturation is equal to the number of rings and/or multiple bonds present in the molecule. The general formula of alkanes is CnH2n+2. Knowing this relationship and by working backward the degree of unsaturation in a molecule can be calculated. Each ring or a double bond in a molecule corresponds to a loss of two hydrogens from the formula of alkane. If the compound contains halogens, oxygen and/or nitrogen, then the number of halogens is to be added to the number of hydrogens, the number of oxygens to be ignored and number of the nitrogens is to be subtracted, in arriving at an equivalent hydrocarbon formula.
To calculate:
The degree of unsaturation in prostaglandin E1 with molecular formula C20H34O5.
![Check Mark](/static/check-mark.png)
Answer to Problem 67AP
The degree of unsaturation in prostaglandin E1 with molecular formula C20H34O5 is 4.
Explanation of Solution
Molecular formula of porostaglandin E1 is C20H34O5. If oxygens are ignored the formula becomes C20H34. A hydrocarbon with twenty carbons will have the molecular formula C20H42. The compound given has four pairs of hydrogens (H42-H34=8) less. So its degree of unsaturation is 4.
The degree of unsaturation in prostaglandin E1 with molecular formula C20H34O5 is 4.
d) Caffeine, C8H10N4O2
Interpretation:
The degree of unsaturation in caffeine, C8H10N4O2, is to be calculated.
Concept introduction:
The degree of unsaturation is equal to the number of rings and/or multiple bonds present in the molecule. The general formula of alkanes is CnH2n+2. Knowing this relationship and by working backward the degree of unsaturation in a molecule can be calculated. Each ring or a double bond in a molecule corresponds to a loss of two hydrogens from the formula of alkane. If the compound contains halogens, oxygen and/or nitrogen, then the number of halogens is to be added to the number of hydrogens, the number of oxygens to be ignored and number of the nitrogens is to be subtracted, in arriving at an equivalent hydrocarbon formula.
To calculate:
The degree of unsaturation in caffeine with molecular formula C8H10N4O2.
![Check Mark](/static/check-mark.png)
Answer to Problem 67AP
The degree of unsaturation in caffeine with molecular formula C8H10N4O2 is 6.
Explanation of Solution
Molecular formula of caffeine is C8H10N4O2. If four hydrogens are subtracted for four nitrogens and oxygens are ignored the formula becomes C8H6. A hydrocarbon with eight carbons will have the molecular formula C8H18. The compound given has six pairs of hydrogens (H18-H6=12) less. So its degree of unsaturation is 6.
Conclusion:
The degree of unsaturation in caffeine with molecular formula C8H10N4O2 is 6.
The degree of unsaturation in caffeine with molecular formula C8H10N4O2 is 6.
e) Cortisone, C21H28O5
Interpretation:
The degree of unsaturation in cortisone, C21H28O5 is to be calculated.
Concept introduction:
The degree of unsaturation is equal to the number of rings and/or multiple bonds present in the molecule. The general formula of alkanes is CnH2n+2. Knowing this relationship and by working backward the degree of unsaturation in a molecule can be calculated. Each ring or a double bond in a molecule corresponds to a loss of two hydrogens from the formula of alkane. If the compound contains halogens, oxygen and/or nitrogen, then the number of halogens is to be added to the number of hydrogens, the number of oxygens to be ignored and number of the nitrogens is to be subtracted, in arriving at an equivalent hydrocarbon formula.
To calculate:
The degree of unsaturation in cortisone with molecular formula C21H28O5.
![Check Mark](/static/check-mark.png)
Answer to Problem 67AP
The degree of unsaturation in cortisone with molecular formula C21H28O5 is 8.
Explanation of Solution
Molecular formula of cortisone is C21H28O5. If oxygens are ignored then the formula becomes C21H28. A hydrocarbon with twenty one carbons will have the molecular formula C21H44. The compound given has eight pairs of hydrogens (H44-H28=16) less. So its degree of unsaturation is 8.
The degree of unsaturation in cortisone with molecular formula C21H28O5 is 8.
f) Atropine, C17H23NO3
Interpretation:
The degree of unsaturation in atropine, C17H23NO3 is to be calculated.
Concept introduction:
The degree of unsaturation is equal to the number of rings and/or multiple bonds present in the molecule. The general formula of alkanes is CnH2n+2. Knowing this relationship and by working backward the degree of unsaturation in a molecule can be calculated. Each ring or a double bond in a molecule corresponds to a loss of two hydrogens from the formula of alkane. If the compound contains halogens, oxygen and/or nitrogen, then the number of halogens is to be added to the number of hydrogens, the number of oxygens to be ignored and number of the nitrogens is to be subtracted, in arriving at an equivalent hydrocarbon formula.
To calculate:
The degree of unsaturation in atropine with molecular formula C17H23NO3.
![Check Mark](/static/check-mark.png)
Answer to Problem 67AP
The degree of unsaturation in atropine with molecular formula C17H23NO3 is 7.
Explanation of Solution
Molecular formula of atropine is C17H23NO3. If one hydrogen is subtracted for one nitrogen and oxygens are ignored the formula becomes C17H22. A hydrocarbon with seventeen carbons will have the molecular formula C17H36. The compound given has seven pairs of hydrogens (H36-H22=14) less. So its degree of unsaturation is 7.
The degree of unsaturation in atropine with molecular formula C17H23NO3 is 7.
Want to see more full solutions like this?
Chapter 7 Solutions
Bundle: Organic Chemistry, 9th, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- The emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forwardSteps and explanation to undertand concepts.arrow_forward
- Nonearrow_forward7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forward
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- 46. Consider an ideal gas that occupies 2.50 dm³ at a pressure of 3.00 bar. If the gas is compressed isothermally at a constant external pressure so that the final volume is 0.500 dm³, calculate the smallest value Rest can have. Calculate the work involved using this value of Rext.arrow_forwardNonearrow_forward2010. Suppose that a 10 kg mass of iron at 20 C is dropped from a heigh of 100 meters. What is the kinetics energy of the mass just before it hits the ground, assuming no air resistance? What is its speed? What would be the final temperature of the mass if all the kinetic energy at impact is transformed into internal energy? The molar heat capacity of iron is Cpp = 25.1J mol-¹ K-1 and the gravitational acceleration constant is 9.8 m s¯² |arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285869759/9781285869759_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580350/9781305580350_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305960060/9781305960060_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305081079/9781305081079_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)