
Find the distance a.

Answer to Problem 7.148P
The distance a is
Explanation of Solution
Given information:
The length of the cable AB is
The value of angle
The collar at A is slides freely and the collar at B is prevented from the moving.
Calculation:
Show the free-body diagram of the cable assembly as in Figure 1.
Refer Equation 7.16 in the textbook.
Write the equation of the catenary cable as follows;
Differentiate the equation with x;
The slope at point A is;
The length of the portion AC is;
The length of the portion CB is;
Find the distance
Substitute 10 ft for L,
Find the distance
Find the distance
Consider the triangle ABD;
Find the value of
Find the distance a using the relation.
Use the trial and error procedure to find the value of a.
Consider the value of c and for the given value of
Find the angle
Trial 1:
Consider a trial value of 1.60 ft for c.
Substitute 1.60 ft for c and
Substitute 1.60 ft for c and 1.410 ft for
Substitute 1.60 ft for c and 1.410 ft for
Substitute 1.60 ft for c and 3.777 ft for
Substitute 1.410 ft for
The calculated value of
Trial 2:
Consider a trial value of 1.70 ft for c.
Substitute 1.70 ft for c and
Substitute 1.70 ft for c and 1.498 ft for
Substitute 1.70 ft for c and 1.498 ft for
Substitute 1.70 ft for c and 3.891 ft for
Substitute 1.498 ft for
The calculated value of
Trial 3:
Consider a trial value of 1.8652 ft for c.
Substitute 1.8652 ft for c and
Substitute 1.8652 ft for c and 1.644 ft for
Substitute 1.8652 ft for c and 1.644 ft for
Substitute 1.8652 ft for c and 4.064 ft for
Substitute 1.644 ft for
The calculated value of
Therefore, the value of c is 1.8652 ft.
Substitute 2.638 ft for
Therefore, the distance a is
Want to see more full solutions like this?
Chapter 7 Solutions
EBK VECTOR MECHANICS FOR ENGINEERS: STA
- Auto Controls Hand sketch the root Focus of the following transfer function How many asymptotes are there ?what are the angles of the asymptotes?Does the system remain stable for all values of K NO COPIED SOLUTIONSarrow_forward-400" 150" in Datum 80" 90" -280"arrow_forwardUsing hand drawing both of themarrow_forward
- A 10-kg box is pulled along P,Na rough surface by a force P, as shown in thefigure. The pulling force linearly increaseswith time, while the particle is motionless att = 0s untilit reaches a maximum force of100 Nattimet = 4s. If the ground has staticand kinetic friction coefficients of u, = 0.6 andHU, = 0.4 respectively, determine the velocityof the A 1 0 - kg box is pulled along P , N a rough surface by a force P , as shown in the figure. The pulling force linearly increases with time, while the particle is motionless at t = 0 s untilit reaches a maximum force of 1 0 0 Nattimet = 4 s . If the ground has static and kinetic friction coefficients of u , = 0 . 6 and HU , = 0 . 4 respectively, determine the velocity of the particle att = 4 s .arrow_forwardCalculate the speed of the driven member with the following conditions: Diameter of the motor pulley: 4 in Diameter of the driven pulley: 12 in Speed of the motor pulley: 1800 rpmarrow_forward4. In the figure, shaft A made of AISI 1010 hot-rolled steel, is welded to a fixed support and is subjected to loading by equal and opposite Forces F via shaft B. Stress concentration factors K₁ (1.7) and Kts (1.6) are induced by the 3mm fillet. Notch sensitivities are q₁=0.9 and qts=1. The length of shaft A from the fixed support to the connection at shaft B is 1m. The load F cycles from 0.5 to 2kN and a static load P is 100N. For shaft A, find the factor of safety (for infinite life) using the modified Goodman fatigue failure criterion. 3 mm fillet Shaft A 20 mm 25 mm Shaft B 25 mmarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





