Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7.3, Problem 7.3GI
A bowling ball is tied to the end of a long rope and suspended from the ceiling. A student stands at one side of the room and holds the ball to her nose, then releases it from rest. Should she duck as it swings back? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A horizontal water jet of constant velocity V from a stationary nozzle impinges normally on a vertical flat plate that rides on a nearly frictionless track. As the water jet hits the plate, it begins to move due to the water force. What is the highest velocity the plate can attain? Explain.
Determine the magnitude and location of the resultant of the force systems shown in Figure 6.
20 N
5 NA
0.5 mx
2 m
1/1
mm
Z
FIGURE 6
4 m
10 N
A 26-g rifle bullet traveling 240 m/s embeds itself in a 3.7-kg pendulum hanging on a 2.6-m-long string, which makes the pendulum swing upward in an arc. (Figure 1)
a)Determine the vertical component of the pendulum's maximum displacement.
b)Determine the horizontal component of the pendulum's maximum displacement.
Chapter 7 Solutions
Essential University Physics (3rd Edition)
Ch. 7.1 - Suppose it takes the same amount of work to push a...Ch. 7.2 - Gravitational force actually decreases with...Ch. 7.3 - A bowling ball is tied to the end of a long rope...Ch. 7.4 - For which of the following systems is (1)...Ch. 7.5 - A bowling ball is tied to the end of a long rope...Ch. 7.6 - The figure shows the potential energy associated...Ch. 7 - Figure 7.14 shows force vectors at different...Ch. 7 - Is the conservation-of-mechanical-energy principle...Ch. 7 - Why cant we define a potential energy associated...Ch. 7 - Can potential energy be negative? Can kinetic...
Ch. 7 - If the potential energy is zero at a given point,...Ch. 7 - If the difference in potential energy between two...Ch. 7 - If the difference in potential energy between two...Ch. 7 - A tightrope walker follows an essentially...Ch. 7 - If conservation of energy is a law of nature, why...Ch. 7 - Determine the work you would have to do to move a...Ch. 7 - Now lake Fig. 7.15 lo lie in a vertical plane, and...Ch. 7 - Rework Example 7.1, now taking the zero of...Ch. 7 - Find the potential energy associated with a 70-kg...Ch. 7 - You fly from Bostons Logan Airport, at sea level,...Ch. 7 - The potential energy associated with a 60-kg hiker...Ch. 7 - How much energy can be stored in a spring with k =...Ch. 7 - How far would you have to stretch a spring with k...Ch. 7 - A biophysicist grabs the ends of a DNA strand with...Ch. 7 - A skier starts down a frictionless 32 slope. After...Ch. 7 - A 10,000-kg Navy jet lands on an aircraft carrier...Ch. 7 - A 120-g arrow is shot vertically from a bow whose...Ch. 7 - In a railroad yard, a 35,000-kg boxcar moving at...Ch. 7 - You work for a toy company, and youre designing a...Ch. 7 - A 54-kg ice skater pushes off the wall of the...Ch. 7 - Prob. 25ECh. 7 - A particle slides along the frictionless track...Ch. 7 - A particle slides back and forth on a frictionless...Ch. 7 - A particle is trapped in a potential well...Ch. 7 - The reservoir at Northfield Mountain Pumped...Ch. 7 - The force in Fig. 7.14a is given by Fa=FoJ, where...Ch. 7 - A 1.50-kg brick measures 20.0 cm 8.00 cm 5.50...Ch. 7 - A carbon monoxide molecule can be modeled as a...Ch. 7 - A more accurate expression for the force law of...Ch. 7 - For small stretches, the Achilles tendon can be...Ch. 7 - The force exerted by an unusual spring when its...Ch. 7 - The force on a particle is given by F=Al/x2, where...Ch. 7 - A particle moves along the x-axis under the...Ch. 7 - As a highway engineer, youre asked to design a...Ch. 7 - A spring of constant k, compressed a distance x,...Ch. 7 - A child is on a swing whose 3.2-m-long chains make...Ch. 7 - With x x0 = h and a = g, Equation 2.11 gives the...Ch. 7 - The nuchal ligament is a cord-like structure that...Ch. 7 - A 200-g block slides back and forth on a...Ch. 7 - Automotive standards call for bumpers that sustain...Ch. 7 - A block slides on the frictionless loop-the-loop...Ch. 7 - The maximum speed of the pendulum bob in a...Ch. 7 - A mass m is dropped from height h above the top of...Ch. 7 - A particle with total energy 3.5 J is trapped in a...Ch. 7 - (a) Derive an expression for the potential energy...Ch. 7 - In ionic solids such as NaCl (salt), the potential...Ch. 7 - Repeat Exercise 19 for the case when the...Ch. 7 - As an energy-efficiency consultant, youre asked to...Ch. 7 - A spring of constant k = 340 N/m is used to launch...Ch. 7 - A bug slides back and forth in a bowl 15 cm deep,...Ch. 7 - A 190-g block is launched by compressing a spring...Ch. 7 - A block slides down a frictionless incline that...Ch. 7 - An 840-kg roller-coaster car is launched from a...Ch. 7 - A particle slides back and forth in a frictionless...Ch. 7 - A child sleds down a frictionless hill whose...Ch. 7 - A bug lands on top of the frictionless, spherical...Ch. 7 - A particle of mass m is subject to a force...Ch. 7 - A block of weight 4.5 N is launched up a 30...Ch. 7 - Your engineering department is asked to evaluate...Ch. 7 - Your roommate is writing a science fiction novel...Ch. 7 - You have a summer job at your universitys zoology...Ch. 7 - Biomechanical engineers developing artificial...Ch. 7 - Blocks with different masses are pushed against a...Ch. 7 - Nuclear fusion is the process that powers the Sun....Ch. 7 - Nuclear fusion is the process that powers the Sun....Ch. 7 - Nuclear fusion is the process that powers the Sun....Ch. 7 - Nuclear fusion is the process that powers the Sun....
Additional Science Textbook Solutions
Find more solutions based on key concepts
38. A squirrel in a typical long glide covers a horizontal distance of 16 m while losing 8.0 m of elevation. Du...
College Physics: A Strategic Approach (3rd Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
WHAT IF What would the discovery of a bacterial species that is a methanogen imply about the evolution of the ...
Campbell Biology (11th Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is the following situation impossible? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The hall launcher in the machine sends metal halls up one side of the machine and then into play. The spring in the launcher (Fig. P7.44) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined = 10.0 with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting. Figure P7.44arrow_forwardA particle is suspended from a post on top of a can by a light string of length L. as shown in Figure P9.57a. The can and particle are initially moving to the right at constant speed the with the string vertical. The can suddenly comes to rest when it runs into and sticks to a bumper as shown in Figure P9.57b. The suspended panicle swings through an angle . (a) Show that the original speed of the cart can be computed from. vi=2gL(1cos) (b) If the bumper is still exerting a horizontal force on the cart when the hanging panicle is at its maximum angle forward from the vertical. at what moment does the bumper stop exerting a horizontal force?arrow_forwardA toy cannon uses a spring to project a 5.30-g soft rubber ball. The spring is originally compressed by 5.00 cm and has a force constant of 8.00 N/m. When the cannon is fired, the ball moves 15.0 cm through the horizontal barrel of the cannon, and the barrel exerts a constant friction force of 0.032 0 N on the ball. (a) With what speed does the projectile leave the barrel of the cannon? (b) At what point does the hall have maximum speed? (c) What is this maximum speed?arrow_forward
- Why is the following situation impossible? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The ball launcher in the machine sends metal balls up one side of the machine and then into play. The spring in the launcher (Fig. P6.60) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined = 10.0 with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting.arrow_forwardA 1.00-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Fig. P8.62a). The object has a speed of vi = 3.00 m/s when it makes contact with a light spring (Fig. P8.62b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Fig. P8.62c). The object is then forced toward the left by the spring (Fig. P8.62d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Fig. P8.62e). Find (a) the distance of compression d, (b) the speed vat the unstretched posi-tion when the object is moving to the left (Fig. P8.624), and (c) the distance D where the abject comes to rest. Figure P8.62arrow_forwardA block of mass m1 = 20.0 kg is connected to a block of mass m2 = 30.0 kg by a massless string that passes over a light, frictionless pulley. The 30.0-kg block is connected to a spring that has negligible mass and a force constant of k = 250 N/m as shown in Figure P7.73. The spring is un-stretched when the system is as shown in the figure, and the incline is frictionless. The 20.0-kg block is pulled a distance h = 20.0 cm down the incline of angle = 40.0 (so that the 30.0-kg block is 40.0 cm above the floor) and released from rest. Find the speed of each block when the 30.0-kg block is 20.0 cm above the floor (that is, when the spring is unstretched). Figure P7.73arrow_forward
- There is a compressed spring between two laboratory carts of masses m1 and m2. Initially, the carts are held at rest on a horizontal track (Fig. P10.40A). The carts are released, and the cart of mass m1 has velocity v1 in the positive x direction (Fig. P10.40B). Assume rolling friction is negligible. a. What is the net external force on the two-cart spring system? b. Find an expression for the velocity of cart 2. c. Sometimes, mistakes are made in a laboratory. For example, what changes in parts (a) and (b) if the track is not level as shown in Figure P10.40C? Explain your answer.arrow_forwardAn open box slides across a frictionless, icy surface of a frozen lake. What happens to the speed of the box as water from a rain shower falls vertically downward into the box? Explain.arrow_forwardReview. A 60.0-kg person running at an initial speed of 4.00 m/s jumps onto a 120-kg cart initially at rest (Fig. P9.37). The person slides on the carts top surface and finally comes to rest relative to the cart. The coefficient of kinetic friction between the person and the cart is 0.400. Friction between the cart and ground can be ignored. (a) Find the final velocity of the person and cart relative to the ground. (b) Find the friction force acting on the person while he is sliding across the top surface of the cart. (c) How long does the friction force act on the person? (d) Find the change in momentum of the person and the change in momentum of the cart. (c) Determine the displacement of the person relative to the ground while he is sliding on the cart. (f) Determine the displacement of the cart relative to the ground while the person is sliding. (g) Find the change in kinetic energy of the person. (h) Find the change in kinetic energy of the cart. (i) Explain why the answers to (g) and (h) differ. (What kind of collision is this one, and what accounts for the loss of mechanical energy) Figure P9.37arrow_forward
- 1.A 0.50-kg croquet ball is initially at rest on the grass. When the ball is struck by a mallet, the average force exerted on it is 230 N. If the ball’s speed after being struck is 3.2 m/s, how long was the mallet in contact with the ball?Explain and labled the problem.arrow_forwardA spring with spring constant k=600 N/m is compressed by 10 cm and launches a ball vertically into the air. The mass of the ball is 2.0 kg. Determine how high the ball will be launched.arrow_forward3. An urban myth states that a penny dropped from the top of the Empire State Building (1440 ft tall) in NYC could be lethal. Ignore air friction and find the final velocity of the penny.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY