Concept explainers
Explain how to add linear expressions without using numbers in your explanation.
Explanation of Solution
Given:
Explain how to add linear expressions without using numbers in your explanation.
Concept Used:
Like terms: When we look at algebraic terms to find like terms, first we ignore the coefficients and only look if terms have the same variables with same exponents. Those terms which qualify this condition are called like terms.
All the given four terms
Here are the basic steps to follow to simplify an algebraic expression:
Remove parentheses by multiplying factors.
Use exponent rules to remove parentheses in terms with exponents.
Combine like terms by adding coefficients.
Combine the constants.
Addition of Algebraic expression In addition of algebraic expressions while adding algebraic expressions we collect the like terms and add them. The sum of several like terms is the like term whose coefficient is the sum of the coefficients of these like terms.
Example:
1. Add: 6a + 8b, 2b - 4a
Solution:
(6a + 8b) + (2b - 4a) = 6a + 8b + 2b - 4a
Arrange the like terms together, then add. Thus, the required addition
= 6a - 4a + 8b + 2b =2a + 10b
Subtraction of Algebraic Expression:
To subtract two or more monomials that are like terms, subtract the coefficients; keep the variables and exponents on the variables the same.
In subtraction of like terms when all the terms are negative, subtract their coefficients, also the variables and power of the like terms remains the same.
Rule for subtracting the linear expression:
Example:
Chapter 7 Solutions
Glencoe Math Accelerated, Student Edition
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Introductory Statistics
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
Elementary Statistics (13th Edition)
Pre-Algebra Student Edition
- 1. Show that the vector field F(x, y, z) = (2x sin ye³)ix² cos yj + (3xe³ +5)k satisfies the necessary conditions for a conservative vector field, and find a potential function for F.arrow_forward1. Newton's Law of Gravitation (an example of an inverse square law) states that the magnitude of the gravitational force between two objects with masses m and M is |F| mMG |r|2 where r is the distance between the objects, and G is the gravitational constant. Assume that the object with mass M is located at the origin in R³. Then, the gravitational force field acting on the object at the point r = (x, y, z) is given by F(x, y, z) = mMG r3 r. mMG mMG Show that the scalar vector field f(x, y, z) = = is a potential function for r √√x² + y² . Fi.e. show that F = Vf. Remark: f is the negative of the physical potential energy, because F = -V(-ƒ).arrow_forward2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below.arrow_forward
- write it down for better understanding pleasearrow_forward1. Suppose F(t) gives the temperature in degrees Fahrenheit t minutes after 1pm. With a complete sentence, interpret the equation F(10) 68. (Remember this means explaining the meaning of the equation without using any mathy vocabulary!) Include units. (3 points) =arrow_forward2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below. a. Evaluate f(-3). If you have multiple steps, be sure to connect your expressions with EQUALS SIGNS. (3 points)arrow_forward
- 4c Consider the function f(x) = 10x + 4x5 - 4x³- 1. Enter the general antiderivative of f(x)arrow_forwardA tank contains 60 kg of salt and 2000 L of water. Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 11 L/min. Let y be the number of kg of salt in the tank after t minutes. The differential equation for this situation would be: dy dt y(0) =arrow_forwardSolve the initial value problem: y= 0.05y + 5 y(0) = 100 y(t) =arrow_forward
- y=f'(x) 1 8 The function f is defined on the closed interval [0,8]. The graph of its derivative f' is shown above. How many relative minima are there for f(x)? O 2 6 4 00arrow_forward60! 5!.7!.15!.33!arrow_forward• • Let > be a potential for the vector field F = (−2 y³, −6 xy² − 4 z³, −12 yz² + 4 2). Then the value of sin((-1.63, 2.06, 0.57) – (0,0,0)) is - 0.336 -0.931 -0.587 0.440 0.902 0.607 -0.609 0.146arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning