Problems 91–94 refer to the following: If a decrease in demand for one product results in an increase in demand for another product, the two products are said to be competitive, or substitute,
products. (Real whipping cream and imitation whipping cream are examples of competitive, or substitute, products.) If a decrease in demand for one product results in a decrease in demand for another product, the two products are said to be complementary products. (Fishing boats and outboard motors are examples of complementary products.) Partial derivatives can be used to test whether two products are competitive, complementary, or neither. We start with demand functions for two products such that the demand for either depends on the prices for both:
The variables x and y represent the number of units demanded of products A and B, respectively, at a price p for 1 unit of product A and a price q for I unit of product B. Normally, if the price of A increases while the price of B is held constant, then the demand for A will decrease; that is, fp(p, q) < 0. Then, if A and B are competitive products, the demand for B will increase; that is, gr(p, q) > 0. Similarly, if the price of B increases while the price of A is held constant, the demand for B will decrease; that is, gq(p, q) < 0. Then, if A and B are competitive products, the demand for A will increase; that is, fq(p, q) > 0. Reasoning similarly for complementary products, we arrive at the following test:
Test for Competitive and Complementary Products
Partial Derivatives | Products A and B |
fq(p, q) > and gp(p, q) > 0 | Competitive (substitute) |
fq(p, q) < and gp(p, q) < 0 | Complementary |
fq(p, q) ≥ and gp(p, q) ≤ 0 | Neither |
fq(p, q) ≤ and gp(p, q) ≥ 0 | Neither |
Use this test in Problems 91-94 to determine whether the indicated products are competitive, complementary, or neither.
92. Product demand. The daily demand equations for the sale of brand A coffee and brand B coffee in a supermarket are
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- Please can you give detailed steps on how the solutions change from complex form to real form. Thanks.arrow_forwardExamples: Solve the following differential equation using Laplace transform (e) ty"-ty+y=0 with y(0) = 0, and y'(0) = 1arrow_forwardExamples: Solve the following differential equation using Laplace transform (a) y" +2y+y=t with y(0) = 0, and y'(0) = 1arrow_forward
- Temperature for Sudbury (degrees Celsius) 3. The following table gives the mean monthly temperatures for Sudbury, Ontario and Windsor, Ontario. Each month is represented by the day of the year in the middle of the month. Month Day of Year Temperature for Windsor (degrees Celsius) January 15 -13.7 -4.7 February 45 -11.9 -3.8 March 75 -5.9 2.3 April 106 3.0 8.7 May 136 10.6 14.6 June 167 15.8 20.2 July 197 18.9 22.6 August 228 17.4 22.0 September 259 12.2 17.9 October 289 6.2 11.5 November 320 -1.2 4.8 December 350 -10.1 -1.2 a) Create a scatter plot of temperature vs. day of the year for each city. b) Draw the curve of best fit for each graph. c) Use your graphs to estimate when the temperature increases fastest, for each set of temperature data. Explain how you determined these values. d) Use your graphs to estimate the rate at which the temperature is increasing at the two times from question 3. e) Determine an equation of a sinusoidal function to model the data for each cityarrow_forwardNot use ai pleasearrow_forwardπ 25. If lies in the interval <0 and Sinh x = tan 0. Show that: 2 Cosh x= Sec 0, tanh x =Sin 0, Coth x = Csc 0, Csch x = Cot 0, and Sech x Cos 0.arrow_forward
- Prove that the Abomian Method (ABM) and homotopy Method (HPM) are equivalent for solving nonlinear dis Serential equations. What the relationship between AdoMian (ADM) and Dafter Dar Jafari Method.arrow_forwardWhat is the relationship between AdoMian decompoition method and homotopy Perturaba tion method with prove?arrow_forwardQuestion 3 [10 marks]. Suppose that X, Y and Z are statistically independent random variables, each of them with a x²(2) distribution. (a) Find the moment generating function of U = X + 3Y + Z. State clearly and justify all steps taken. (b) Calculate the expectation E(U) using the moment generating function.arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning