Problems 91–94 refer to the following: If a decrease in demand for one product results in an increase in demand for another product, the two products are said to be competitive, or substitute,
products. (Real whipping cream and imitation whipping cream are examples of competitive, or substitute, products.) If a decrease in demand for one product results in a decrease in demand for another product, the two products are said to be complementary products. (Fishing boats and outboard motors are examples of complementary products.) Partial derivatives can be used to test whether two products are competitive, complementary, or neither. We start with demand functions for two products such that the demand for either depends on the prices for both:
The variables x and y represent the number of units demanded of products A and B, respectively, at a price p for 1 unit of product A and a price q for I unit of product B. Normally, if the price of A increases while the price of B is held constant, then the demand for A will decrease; that is, fp(p, q) < 0. Then, if A and B are competitive products, the demand for B will increase; that is, gr(p, q) > 0. Similarly, if the price of B increases while the price of A is held constant, the demand for B will decrease; that is, gq(p, q) < 0. Then, if A and B are competitive products, the demand for A will increase; that is, fq(p, q) > 0. Reasoning similarly for complementary products, we arrive at the following test:
Test for Competitive and Complementary Products
Partial Derivatives | Products A and B |
fq(p, q) > and gp(p, q) > 0 | Competitive (substitute) |
fq(p, q) < and gp(p, q) < 0 | Complementary |
fq(p, q) ≥ and gp(p, q) ≤ 0 | Neither |
fq(p, q) ≤ and gp(p, q) ≥ 0 | Neither |
Use this test in Problems 91-94 to determine whether the indicated products are competitive, complementary, or neither.
93. Product demand. The monthly demand equations for the sale of skis and ski boots in a sporting goods store are
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- Sketch the region of the integral dy dx. Write an equivalent double integral with the order of integration reversed. Do not solve the integral.arrow_forwardg Ske Find the area of the region bounded by the parabola x = 2y- y² + 1 and the line y = x + 1arrow_forward- | العنوان For the volume of the region in the first octant shown in the adjacent Figure. It is bounded by the coordinates planes, the plane: y = 1-x, and the surface:z = cos(лx/2), 0 ≤x≤1 Find the limits of integration for the two iterated integrals below: dz dx dy and dy dz dx Then find the volume of this region by only one of the above two iterated integrals. = cos(x/2) of y=1-xarrow_forward
- For the volume of the region in the first octant shown in the adjacent Figure. It is bounded by the coordinates planes, the plane: y = 1-x, and the surface:z = cos(лx/2), 0 ≤x≤1 Find the limits of integration for the two iterated integrals below: dz dx dy and dy dz dx Then find the volume of this region by only one of the above two iterated integrals. cos(x/2)/ y 1-xarrow_forwardNo chatgpt pls will upvotearrow_forwardFind the points of intersections of the function f(x) and its derivative. f(x)=(2x-3)√xarrow_forward
- C = (2√3)/3 or (-2√3)/3 within the interval (-2,2)arrow_forward4. [10 marks] Let T be the following tree: Find a graph G whose block graph BL(G) is isomorphic to T. Explain why your answer is correct.arrow_forward5. [10 marks] Determine whether the graph below has a perfect matching. Explain why your answer is correct. ข พarrow_forward
- (c) Utilize Fubini's Theorem to demonstrate that E(X)= = (1- F(x))dx.arrow_forward(c) Describe the positive and negative parts of a random variable. How is the integral defined for a general random variable using these components?arrow_forwardLet k ≥ 1, and let G be a k-regular bipartite graph with bipartition X, Y . Prove that |X| is the minimum size of a vertex cover in G.arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning