Finding the Dimension of an Eigenspace In Exercises 69-72, find the dimension of the eigenspace corresponding to the eigenvalue
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Elementary Linear Algebra (MindTap Course List)
- Determining Eigenvectors In Exercise 9-12, determine whether X is an eigenvector of A. A=[31052] a X=(4,4) b X=(8,4) c X=(4,8) d X=(5,3)arrow_forwardDetermine a Sufficient Condition for Diagonalization In Exercises 23-26, find the eigenvalues of the matrix and determine there is a sufficient number of eigenvalues to guarantee that the matrix is diagonalizable by Theorem 7.6. [323349125]arrow_forwardFinding Eigenvalues and Dimensions of Eigen spaces In Exercise 7-18, find the eigenvalues of the symmetric matrix. For each eigenvalue, find the dimension of the corresponding eigenspace. [2112]arrow_forward
- Verifying Eigenvalues and Eigenvectors in Exercises 1-6, verify that i is an eigenvalues of A and that Xi is a corresponding eigenvector. A=[223216120], 1=5,X1=(1,2,1)2=3,X2=(2,1,0)3=3,X3=(3,0,1)arrow_forwardVerifying Eigenvalues and EigenvectorsIn Exercises 1-6, verify that i is an eigenvalues of A and that Xi is a corresponding eigenvector. A=[4523], 1=1,X1=(1,1)2=2,X2=(5,2)arrow_forwardVerifying Eigenvalues and Eigenvectors in Exercises 1-6, verify that iis an eigenvalue of A and that xiis a corresponding eigenvector. A=[2002], 1=2,x1=(1,0)2=2,x2=(0,1)arrow_forward
- Verifying Eigenvalues and EigenvectorsIn Exercises 1-6, verify that i is an eigenvalues of A and that Xi is a corresponding eigenvector. A=[010001100], 1=1,X1=(1,1,1)arrow_forwardDiagonalizable Matrices and Eigenvalues In Exercise 1-6, a verify that A is diagonalizable by finding P1AP, and b use the result of part a and Theorem 7.4 to find the eigenvalues of A. A=[1136310],P=[3411]arrow_forwardEigenvalues of Triangular and Diagonal Matrices In Exercises 41-44, find the eigenvalues of the triangular or diagonal matrix. [201034001]arrow_forward
- True or False? In Exercises 67 and 68, determine whether each statement is true or false. If a statement is true, give a reason or cite an appropriate statement from the text. If a statement is false, provide an example that shows the statement is not true in all cases or cite an appropriate statement from the text. a Geometrically, if is an eigenvalue of a matrix A and x is an eigenvector of A corresponding to , then multiplying x by A produce a vector x parallel to x. b If A is nn matrix with an eigenvalue , then the set of all eigenvectors of is a subspace of Rn.arrow_forwardCAPSTONE Explain how to determine whether an nn matrix A is diagonalizable using a similar matrices, b eigenvectors, and c distinct eigenvalues.arrow_forwardCharacteristic Equation, Eigenvalues, and Basis In Exercises 1-6, find a the characteristic equation of A, b the eigenvalues of A, and c a basis for the eigenspace corresponding to each eigenvalue. A=[9432061411]arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage