Eigenvalues of Triangular and Diagonal Matrices In Exercises 41-44, find the eigenvalues of the triangular or diagonal matrix.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Elementary Linear Algebra (MindTap Course List)
- CAPSTONE Explain how to determine whether an nn matrix A is diagonalizable using a similar matrices, b eigenvectors, and c distinct eigenvalues.arrow_forwardEigenvectors of Symmetric Matrix In Exercises 33-38, show that any two eigenvectors of the symmetric matrix corresponding to distinct eigenvalues are orthogonal. [300030002]arrow_forwardDetermine a Sufficient Condition for Diagonalization In Exercises 23-26, find the eigenvalues of the matrix and determine there is a sufficient number of eigenvalues to guarantee that the matrix is diagonalizable by Theorem 7.6. [432011002]arrow_forward
- Finding the Dimension of an Eigenspace In Exercises 69-72, find the dimension of the eigenspace corresponding to the eigenvalue =3. A=[310030003]arrow_forwardFinding Eigenvalues and Dimensions of Eigen spaces In Exercises 7-18, find the eigenvalues of the symmetric matrix. For each eigenvalue, find the dimension of the corresponding eigenspace. [300020002]arrow_forwardDiagonalizable Matrices and Eigenvalues In Exercise 1-6, a verify that A is diagonalizable by finding P1AP, and b use the result of part a and Theorem 7.4 to find the eigenvalues of A. A=[1136310],P=[3411]arrow_forward
- Diagonalizing a Matrix In Exercise 7-14, find if possible a nonsingular matrix P such that P1AP is diagonal. Verify that P1AP is a diagonal matrix with the eigenvalues on the main diagonal A=[100121102]arrow_forwardDetermining Eigenvectors In Exercise 9-12, determine whether X is an eigenvector of A. A=[31052] a X=(4,4) b X=(8,4) c X=(4,8) d X=(5,3)arrow_forwardTrue or False? In Exercises 67 and 68, determine whether each statement is true or false. If a statement is true, give a reason or cite an appropriate statement from the text. If a statement is false, provide an example that shows the statement is not true in all cases or cite an appropriate statement from the text. a Geometrically, if is an eigenvalue of a matrix A and x is an eigenvector of A corresponding to , then multiplying x by A produce a vector x parallel to x. b If A is nn matrix with an eigenvalue , then the set of all eigenvectors of is a subspace of Rn.arrow_forward
- True or False? In Exercises 37 and 38, determine whether each statement is true or false. If a statement is true, give a reason or cite an appropriate statement from the text. If a statement is false, provide an example that shows the statement is not true in all cases or cite an appropriate statement from the text. a If A and B are similar nn matrix, then they have always the same characteristics polynomial equation. b The fact that an nn matrix A has n distinct eigenvalues does not guarantee that A is diagonalizable.arrow_forwardDiagonalizing a Matrix In Exercise 7-14, find if possible a nonsingular matrix P such that P1AP is diagonal. Verify that P1AP is a diagonal matrix with the eigenvalues on the main diagonal A=[122252663] See Exercise 23, section 7.1. Characteristic Equation, Eigenvalues, and EigenvectorsIn Exercise 15-28, find a the characteristics equation and b the eigenvalues and corresponding eigenvectors of the matrix. [122252663]arrow_forwardFinding Eigenvalues and Dimensions of Eigen spaces In Exercise 7-18, find the eigenvalues of the symmetric matrix. For each eigenvalue, find the dimension of the corresponding eigenspace. [2112]arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage