In Problems 1-6, refer to the footnote for the definitions of divisors, multiple, prime, even, and odd.* List the primes between 20 and 30. *An integer d is a divisor of an integer n (and n is a multiple of d ) if n = k d for some integer for some integer k . An integer n is even if 2 is a divisor of n ; otherwise, n is odd. An integer p > 1 is prime if its only positive divisors are 1 and p .
In Problems 1-6, refer to the footnote for the definitions of divisors, multiple, prime, even, and odd.* List the primes between 20 and 30. *An integer d is a divisor of an integer n (and n is a multiple of d ) if n = k d for some integer for some integer k . An integer n is even if 2 is a divisor of n ; otherwise, n is odd. An integer p > 1 is prime if its only positive divisors are 1 and p .
Solution Summary: The author analyzes the list of prime numbers between 20 and 30 with the help of definition of the divisor, multiple, prime, even, and odd.
In Problems 1-6, refer to the footnote for the definitions of divisors, multiple, prime, even, and odd.*
List the primes between 20 and 30.
*An integer
d
is a divisor of an integer
n
(and
n
is a multiple of
d
) if
n
=
k
d
for some integer for some integer
k
. An integer
n
is even if
2
is a divisor of
n
; otherwise,
n
is odd. An integer
p
>
1
is prime if its only positive divisors are
1
and
p
.
(4) (8 points)
(a) (2 points) Write down a normal vector n for the plane P given by the equation
x+2y+z+4=0.
(b) (4 points) Find two vectors v, w in the plane P that are not parallel.
(c) (2 points) Using your answers to part (b), write down a parametrization r: R² —
R3 of the plane P.
(2) (8 points) Determine normal vectors for the planes given by the equations x-y+2z = 3
and 2x + z = 3. Then determine a parametrization of the intersection line of the two
planes.
(3) (6 points)
(a) (4 points) Find all vectors u in the yz-plane that have magnitude [u
also are at a 45° angle with the vector j = (0, 1,0).
= 1 and
(b) (2 points) Using the vector u from part (a) that is counterclockwise to j, find an
equation of the plane through (0,0,0) that has u as its normal.
Chapter 7 Solutions
Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences (13th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY