Concept explainers
Interpretation:
Equations that describe the extraction and isolation procedure of caffeine should be written.
Concept introduction:
Caffeine is a natural product found in tea leaves and coffee beans. It is a beneficial central nervous system stimulant.
Extraction of natural products like caffeine can be done using the appropriate choice of solvents. There are several techniques for extraction of caffeine. The commonly used method is liquid-liquid extraction that is carried out in the presence of water and dichloromethane as the solvents. The difference in densities of water and dichloromethane allow them to form separate layers in a separatory funnel and thus allows the effective separation and isolation of caffeine.
Trending nowThis is a popular solution!
Chapter 7 Solutions
Macroscale and Microscale Organic Experiments
- Nuclear spin energy levels and electron spin energy levels.arrow_forward1. Polyester Formation a. Draw the structure of the polyester formed (Seabacoyl Chloride + Ethylene Glycol). (Insert scanned hand-drawn structure or ChemDraw image.) b. What molecules are eliminated in this condensation reaction?arrow_forwardDon't used Ai solutionarrow_forward
- What is the absorption spectrum of a solution of naphthalene in benzene , and the vibronic transitions responsible for the vibrational fine structure ?arrow_forward3. Titanium(III) chloride can be used to catalyze the polymerization of ethylene. It is prepared by hydrogen reduction of Titanium(IV) chloride. Reaction of hydrogen gas with titanium(IV) chloride gas produces solid titanium(III) chloride and hydrogen chloride gas. (a) Write a BALANCED chemical reaction for the preparation of titanium(III) chloride (b) A 250 L reaction vessel at 325°C is filled with hydrogen gas to a pressure of 1.3 atm. Titanium(IV) chloride is then added to bring the total pressure to 3.00 atm. How many grams of titanium(III) chloride will be produced after completion of the reaction? (c) What will be the pressure of the resulting hydrogen chloride gas that is also produced?arrow_forward1. Sodium azide (NaN3) is the primary chemical substance used in automobile air bags. Upon impact, the decomposition of sodium azide is initiated to produce sodium metal and nitrogen gas which then inflates the bag. How many liters of nitrogen gas are produced at 1.15 atm and 30.0°C when 145.0 grams of sodium azide decomposes? 2. Calcium carbonate (such as that in limestone) reacts with aqueous hydrochloric acid to produce carbon dioxide, aqueous calcium chloride and water. How many liters of carbon dioxide are produced at 20°C and 745 torr when 3.583 grams of calcium carbonate is dissolved in solution containing 1.550 grams of hydrochloric acid?arrow_forward
- Show all work (where appropriate) for full credit. 1. Describe (steps, equipment and quantities) how to accurately prepare 250.0 mL of a 0.0075 M solution of NaCl (aq) from a 500 mL, 0.0500 M stock solution. 2. Describe (steps, equipment and quantities) how to accurately prepare 250.0 mL of a 0.0075 M solution of NaCl (aq) from 100 g of solid NaCl.arrow_forward5. An unlabeled gas cylinder was recently found in the laboratory. A sample of the gas was removed and analyzed. A 500.0 mL sample of the gas at 15°C and a pressure of 736 mmHg was found to weigh 2.688 g. Determine the molar mass of the gas. What element is the gas?arrow_forward4. Nitrogen gas is commonly sold in 49.0 L steal cylinders at a pressure of 150 atm. (a) How many moles of nitrogen are in the container if the temperature of the cylinder is 21°C. (b) How many moles of nitrogen will there be if the container above is heated to 100°C? (careful here) (c) What is the mass of nitrogen gas in the cylinder in part (a)? (d) What volume would the nitrogen occupy at 21°C, if the pressure was reduced to 1.02 atm? (e) What would be the pressure of the nitrogen gas in the cylinder when the temperature is raised to 39°C?arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning