University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 80P
Membrane walls of living cells have surprisingly large electric fields across them due to separation of ions. What is the voltage across an 8.00-nm-thick membrane if the electric field strength across it is 5.50 MV/m? You may assume a uniform electric field.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Membrane walls of living cells have surprisingly large electric fields across them due to separation of ions. (Membranes are discussed in some detail in Nerve Conduction—Electrocardiograms.)
What is the voltage (in mV) across a 9.60 nm thick membrane if the electric field strength across it is 6.20 MV/m? You may assume a uniform electric field.
mV
Membrane walls of living cells have surprisingly large electric fields across them due to separation of ions. (Membranes are
discussed in some detail in Nerve Conduction-Electrocardiograms.) What is the voltage (in mV) across a 7.95 nm thick
membrane if the electric field strength across it is 5.60 MV/m? You may assume a uniform electric field.
mV
Membrane walls of living cells have surprisingly large electric fields across them due to separation of ions. (Membranes are discussed in some detail in Nerve Conduction—Electrocardiograms.) What is the voltage (in mV) across an 8.60 nm thick membrane if the electric field strength across it is 5.60 MV/m? You may assume a uniform electric field.
Chapter 7 Solutions
University Physics Volume 2
Ch. 7 - Check Your Understanding If Q has a mass of 4.00 g...Ch. 7 - Check Your Understanding What is the potential...Ch. 7 - Check Your Understanding Is the electrical...Ch. 7 - Check Your Understanding How much energy does a...Ch. 7 - Check Your Understanding How many electrons would...Ch. 7 - Check Your Understanding How would this example...Ch. 7 - Check Your Understanding From the examples, how...Ch. 7 - Check Your Understanding What is the potential...Ch. 7 - Check Your Understanding What is the potential on...Ch. 7 - Check Your Understanding What is the potential on...
Ch. 7 - Check Your Understanding Which coordinate system...Ch. 7 - Check Your Understanding What are the...Ch. 7 - Would electric potential energy be meaningful if...Ch. 7 - Why do we need to be careful about work done on...Ch. 7 - Does the order in which we assemble a system of...Ch. 7 - Discuss how potential difference and electric...Ch. 7 - What is die strength of the electric field in a...Ch. 7 - If a proton is released from rest in an electric...Ch. 7 - Voltage is the common word for potential...Ch. 7 - If the voltage between two points is zero can a...Ch. 7 - Wliat is the relationship between voltage and...Ch. 7 - Voltages are always measured between two points...Ch. 7 - How are units of volts and electron-volts related?...Ch. 7 - Can a particle move in a direction of increasing...Ch. 7 - Compare the electric dipole moments of charges +Q...Ch. 7 - Would Gauss’s law be helpful for determining the...Ch. 7 - In what region of space is the potential due to a...Ch. 7 - Can the potential of a nonuniformly charged sphere...Ch. 7 - If the electric field is zero throughout a region,...Ch. 7 - Explain why knowledge of E(x, y, z) is not...Ch. 7 - If two points are at the same potential, are there...Ch. 7 - Suppose you have a map of equipotential surfaces...Ch. 7 - Is the electric potential necessarily constant...Ch. 7 - Linder electrostatic conditions, the excess charge...Ch. 7 - - Can a positively charged conductor be at a...Ch. 7 - Can equipotential surfaces intersect?Ch. 7 - Why are the metal support rods for satellite...Ch. 7 - (a) Why are fish reasonably safe in an electrical...Ch. 7 - What are the similarities and differences between...Ch. 7 - About what magnitude of potential is used to...Ch. 7 - Consider a charge Q1(1+5.0C) fixed at a site with...Ch. 7 - Two charges Q1(1+2.00C) and Q2(+2.00C are placed...Ch. 7 - To form a hydrogen atom, a proton is fixed at a...Ch. 7 - (a) What is the average power output of a heart...Ch. 7 - Find the ratio of speeds of an electron and a...Ch. 7 - An evacuated tube uses an accelerating voltage of...Ch. 7 - Show that units of V/m and N/C for electric field...Ch. 7 - What is the strength of the electric field between...Ch. 7 - The electric field strength between two parallel...Ch. 7 - The voltage across a membrane forming a cell wall...Ch. 7 - Two parallel conducting plates are separated by...Ch. 7 - Find the maximum potential difference between two...Ch. 7 - An electron is to be accelerated in a uniform...Ch. 7 - Use die definition of potential difference in...Ch. 7 - The electric field in a region is pointed away...Ch. 7 - Singly charged gas ions are accelerated from rest...Ch. 7 - A 0.500-cm-diameter plastic sphere, used in a...Ch. 7 - How far from a 1.00C point charge is the potential...Ch. 7 - If the potential due to a point charge is 5.00102...Ch. 7 - In nuclear fission, a nucleus splits roughly in...Ch. 7 - A research Vail de Graaff generator has a 2.00-m-...Ch. 7 - An electrostatic paint sprayer has a...Ch. 7 - (a) What is the potential between two points...Ch. 7 - Find the potential at points P1,P2,andP4 in the...Ch. 7 - Two charges 20Cand+2.0C are separated by 4.0 cm on...Ch. 7 - (a) Plot the potential of a uniformly charged 1-m...Ch. 7 - Throughout a region, equipotential surfaces are...Ch. 7 - In a particular region, the electric potential is...Ch. 7 - Calculate the electric field of an infinite line...Ch. 7 - Two very large metal plates are placed 2.0 cm...Ch. 7 - A very large sheet of insulating material has had...Ch. 7 - A metallic sphere of radius 2.0 cm is charged with...Ch. 7 - Two large charged plates of charge density 30C/m2...Ch. 7 - A long cylinder of aluminum of radius R meters is...Ch. 7 - Two parallel plates 10 cm on a side are given...Ch. 7 - The surface charge density on a long straight...Ch. 7 - Concentric conducting spherical shells carry...Ch. 7 - Shown below are two concentric spherical shells of...Ch. 7 - A solid cylindrical conductor of radius a is...Ch. 7 - (a) What is the electric field 5.00 m from die...Ch. 7 - (a) What is the direction and magnitude of an...Ch. 7 - A simple and common technique for accelerating...Ch. 7 - In a Geiger counter, a thin metallic wire at the...Ch. 7 - The practical limit to all electric field in air...Ch. 7 - To form a helium atom, an alpha particle that...Ch. 7 - Find the electrostatic energy of eight equal...Ch. 7 - The probability of fusion occurring is greatly...Ch. 7 - A bare helium nucleus has two positive charges and...Ch. 7 - An election enters a region between two large...Ch. 7 - How far apart are two conducting plates that have...Ch. 7 - (a) Will the electric field strength between two...Ch. 7 - Membrane walls of living cells have surprisingly...Ch. 7 - A double charged ion is accelerated to an energy...Ch. 7 - The temperature near the center of the Sun is...Ch. 7 - A lightning bolt strikes a tree, moving 20.0 C of...Ch. 7 - What is the potential 0.5301010 m from a proton...Ch. 7 - (a) A sphere has a surface uniformly charged with...Ch. 7 - What are the sign and magnitude of a point charge...Ch. 7 - In one of the classic nuclear physics experiments...Ch. 7 - A 12.0-V battery-operated bottle warmer heats 50.0...Ch. 7 - A battery-operated car uses a 12.0-V system. Find...Ch. 7 - (a) Find the voltage near a 10.0 cm diameter metal...Ch. 7 - A uniformly charged ring of radius 10 cm is placed...Ch. 7 - A glass ring of radius 5.0 cm is painted with a...Ch. 7 - A CD disk of radius (R = 3.0 cm) is sprayed with a...Ch. 7 - (a) What is the final speed of an electron...Ch. 7 - A large metal plate is charged uniformly to a...Ch. 7 - Your friend gets really excited by the idea of...Ch. 7 - (a) Find x L limit of the potential of a finite...Ch. 7 - A small spherical pith ball of radius 0.50 cm is...Ch. 7 - Two parallel conducting plates, each of...Ch. 7 - A point charge of q=50108 C is placed at the...Ch. 7 - Earth has a net charge that produces an electric...Ch. 7 - Point charges of 25.0/ C and 45. C are placed...Ch. 7 - What can you say about two charges q1and q2 if the...Ch. 7 - Calculate the angular velocity of an electron...Ch. 7 - An electron has an initial velocity of 5.00106m/s...Ch. 7 - Three Na+ and three Cl ions are placed alternately...Ch. 7 - Look up (presumably online, or by dismantling an...Ch. 7 - Use the electric field of a finite sphere with...Ch. 7 - Calculate the electric field of a dipole...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Calculate the total thermal energy in a liter of helium at room temperature and atmospheric pressure. Then repe...
An Introduction to Thermal Physics
24.3 Gratings: an application of interference
18. * EST You shine a green laser beam on a grating and observe 1...
College Physics
Explain why caprylic acid, CH3(CH2)6COOH, dissolves in a 5 aqueous solution of sodium hydroxide but caprylaldeh...
Conceptual Integrated Science
(a) Differentiate the result of Problem 55 to show that the maximum value of occurs when the incidence angle ...
Essential University Physics: Volume 2 (3rd Edition)
1. If a particle’s speed increases by a factor of 3, by what factor does its kinetic energy change?
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
3. Which of the characteristics of a sound wave (amplitude or frequency) is most closely related to musical pit...
College Physics (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Will the electric field strength between two parallel conducting plates exceed the breakdown strength of dry air, which is 3.00106 V/m, if the plates are separated by 2.00 mm and a potential difference of 5.010V is applied? (b) How close together can the plates be with this applied voltage?arrow_forward(a) What is the final speed of an electron accelerated from rest through a voltage of 25.0 MV by a negatively charged Van de Graff terminal? (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forward(a) Will the electric field strength between two parallel conducting plates exceed the breakdown strength for air ( 3.0 106 V/m) if the plates are separated by 2.00 mm and a potential difference of 5.0 103 V is applied? (b) How close together can the plates be with this applied voltage?arrow_forward
- Membrane walls of living cells have surprisingly large electric fields across them due to separation of ions. d = 7.5 nmE = 4.5 MV/m What is the voltage in mV across an 7.5 nm thick membrane if the electric field strength across it is 4.5 MV/m? You may assume a uniform electric field.arrow_forwardMembrane walls of living cells have surprisingly large electric fields across them due to separation of ions. (Membranes are discussed in some detail in Nerve Conduction—Electrocardiograms.) What is the voltage across an 8.00 nm–thick membrane if the electric field strength across it is 5.50 MV/m? You may assume a uniform electric field.arrow_forwardThe voltage across a membrane forming a cell wall is 84.0 mV and the membrane is 8.40 nm thick. What is the electric field strength in volts per meter? (The value is surprisingly large, but correct. Membranes are discussed later in the textbook.) You may assume a uniform E-field.arrow_forward
- Membrane walls of living cells have surprisingly large electric fields across them due to separation of ions. d= 7.5 mm E-5.75 MV/m What is the voltage in mV across an 7.5 nm thick membrane if the electric field strength across it is 5.75 MV/m? You may assume a uniform electric field. VAB.arrow_forwardA nerve signal is transmittedthrough a neuron when an excess of Na+ ions suddenly enters the axon,a long cylindrical part of the neuron. Axons are approximately 10.0 mmin diameter, and measurements show that about 5.6 * 1011 Na+ ions permeter (each of charge +e) enter during this process. Although the axonis a long cylinder, the charge does not all enter everywhere at the sametime. A plausible model would be a series of point charges moving alongthe axon. Consider a 0.10 mm length of the axon and model it as a pointcharge. (a) If the charge that enters each meter of the axon gets distributeduniformly along it, how many coulombs of charge enter a 0.10 mmlength of the axon? (b) What electric field (magnitude and direction)does the sudden influx of charge produce at the surface of the body ifthe axon is 5.00 cm below the skin? (c) Certain sharks can respond toelectric fields as weak as 1.0 mN/C. How far from this segment of axoncould a shark be and still detect its electric field?arrow_forwardMembrane walls of living cells have surprisingly large electric fields across them due to the separation of ions. What is the voltage across an 8 nm-thick membrane if the electric field strength is 5.5 MV/m?arrow_forward
- Outlook M. Gmail O YouTube Eğitim Yönetim Sist... Sınav Kuralları: 15/20 The electrical potential over a certain region of space is given by V = 2x - 5x²y + 3yz?. Find expressions for the x,y, and z components of the electric field in this region. What is the magnitude of the electric field (in units of Volts/meter) at point P, whose coordinates are given as (1, 0, -2) in units of meters? a) 5/2 b) V53 c) V193 d) 4 e) V333 Seçtiğiniz cevabın işaretlendiğini görene kadar bekleviniz Soarrow_forwardThe voltage across a membrane forming a cell wall is 77.7 mV and the membrane is 9.02 nm thick. What is the electric field strength? (The value is surprisingly large, but correct.) You may assume a uniform E-field.arrow_forwardThe voltage across a membrane forming a cell wall is 78.7 mV and the membrane is 8.52 nm thick. What is the electric field strength? (The value is surprisingly large, but correct.) You may assume a uniform E-field. (V/m)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY