
Introductory Combinatorics
5th Edition
ISBN: 9780134689616
Author: Brualdi, Richard A.
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 7E
To determine
To prove: The greatest common divisor of the Fibonacci numbers
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Problem 11 (a) A tank is discharging water through an orifice at a depth of T
meter below the surface of the water whose area is A m². The
following are the values of a for the corresponding values of A:
A 1.257 1.390
x 1.50 1.65
1.520 1.650 1.809 1.962 2.123 2.295 2.462|2.650
1.80 1.95 2.10 2.25 2.40 2.55 2.70
2.85
Using the formula
-3.0
(0.018)T =
dx.
calculate T, the time in seconds for the level of the water to drop
from 3.0 m to 1.5 m above the orifice.
(b) The velocity of a train which starts from rest is given by the fol-
lowing table, the time being reckoned in minutes from the start
and the speed in km/hour:
| † (minutes) |2|4 6 8 10 12
14 16 18 20
v (km/hr) 16 28.8 40 46.4 51.2 32.0 17.6 8 3.2 0
Estimate approximately the total distance ran in 20 minutes.
-
Let n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p − 1)/2
multiple of n, i.e.
n mod p, 2n mod p, ...,
p-1
2
-n mod p.
Let T be the subset of S consisting of those residues which exceed p/2.
Find the set T, and hence compute the Legendre symbol (7|23).
23
32
how come?
The first 11 multiples of 7 reduced mod 23 are
7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8.
The set T is the subset of these residues exceeding
So T = {12, 14, 17, 19, 21}.
By Gauss' lemma (Apostol Theorem 9.6),
(7|23) = (−1)|T| = (−1)5 = −1.
Let n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p-1)/2
multiple of n, i.e.
n mod p, 2n mod p, ...,
2
p-1
-n mod p.
Let T be the subset of S consisting of those residues which exceed p/2.
Find the set T, and hence compute the Legendre symbol (7|23).
The first 11 multiples of 7 reduced mod 23 are
7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8.
23
The set T is the subset of these residues exceeding
2°
So T = {12, 14, 17, 19, 21}.
By Gauss' lemma (Apostol Theorem 9.6),
(7|23) = (−1)|T| = (−1)5 = −1.
how come?
Chapter 7 Solutions
Introductory Combinatorics
Ch. 7 - Prob. 1ECh. 7 - Prove that the nth Fibonacci number fn is the...Ch. 7 - Prove the following about the Fibonacci...Ch. 7 - 4. Prove that the Fibonacci sequence is the...Ch. 7 - By examining the Fibonacci sequence, make a...Ch. 7 - * Let m and n be positive integers. Prove that if...Ch. 7 - * Let m and n be positive integers whose greatest...Ch. 7 - Consider a 1-by-n chessboard. Suppose we color...Ch. 7 - Prob. 9ECh. 7 - Prob. 10E
Ch. 7 - Prob. 11ECh. 7 - Prob. 12ECh. 7 - 13. Determine the generating function for each of...Ch. 7 - 14. Let S be the multiset {∞ · e1, ∞ · e2, ∞ · e3,...Ch. 7 - 15. Determine the generating function for the...Ch. 7 - 16. Formulate a combinatorial problem for which...Ch. 7 - 17. Determine the generating function for the...Ch. 7 - 18. Determine the generating function for the...Ch. 7 - 19. Let h0, h1, h2, …, hn, … be the sequence...Ch. 7 - Prob. 20ECh. 7 - 21. * Let hn denote the number of regions into...Ch. 7 - 22. Determine the exponential generating function...Ch. 7 - 23. Let α be a real number. Let the sequence h0,...Ch. 7 - 24. Let S be the multiset {∞ · e1, ∞ · e2, · , ∞ ·...Ch. 7 - 25. Let hn denote the number of ways to color the...Ch. 7 - Determine the number of ways to color the squares...Ch. 7 - Determine the number of n-digit numbers with all...Ch. 7 - Determine the number of n-digit numbers with all...Ch. 7 - We have used exponential generating functions to...Ch. 7 - Prob. 30ECh. 7 - Solve the recurrence relation hn = 4hn−2, (n ≥ 2)...Ch. 7 - Prob. 32ECh. 7 - Solve the recurrence relation hn = hn−1 + 9hn−2 −...Ch. 7 - Solve the recurrence relation hn = 8hn−1 − 16hn−2,...Ch. 7 - Solve the recurrence relation hn = 3hn − 2 − 2hn −...Ch. 7 - Prob. 36ECh. 7 - Determine a recurrence relation for the number an...Ch. 7 - Prob. 38ECh. 7 - Let hn denote the number of ways to perfectly...Ch. 7 - Let an equal the number of ternary strings of...Ch. 7 - * Let 2n equally spaced points be chosen on a...Ch. 7 - Solve the nonhomogeneous recurrence relation
Ch. 7 - Solve the nonhomogeneous recurrence relation
hn =...Ch. 7 - Solve the nonhomogeneous recurrence relation
Ch. 7 - Prob. 45ECh. 7 - Solve the nonhomogeneous recurrence relation
Ch. 7 - Solve the nonhomogeneous recurrence relation
Ch. 7 - Solve the following recurrence relations by using...Ch. 7 - (q-binomial theorem) Prove that
where
is the...Ch. 7 - Call a subset S of the integers {1, 2, …, n}...Ch. 7 - Solve the recurrence relation
from Section 7.6...Ch. 7 - Prob. 52ECh. 7 - Suppose you deposit $500 in a bank account that...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Shading a Venn diagram with 3 sets: Unions, intersections, and... The Venn diagram shows sets A, B, C, and the universal set U. Shade (CUA)' n B on the Venn diagram. U Explanation Check A- B Q Search 田arrow_forward3. A different 7-Eleven has a bank of slurpee fountain heads. Their available flavors are as follows: Mountain Dew, Mountain Dew Code Red, Grape, Pepsi and Mountain Dew Livewire. You fill five different cups full with each type of flavor. How many different ways can you arrange the cups in a line if exactly two Mountain Dew flavors are next to each other? 3.2.1arrow_forwardBusinessarrow_forward
- Please explain how come of X2(n).arrow_forwardNo chatgpt pls will upvotearrow_forwardFind all solutions of the polynomial congruence x²+4x+1 = 0 (mod 143). (The solutions of the congruence x² + 4x+1=0 (mod 11) are x = 3,4 (mod 11) and the solutions of the congruence x² +4x+1 = 0 (mod 13) are x = 2,7 (mod 13).)arrow_forward
- https://www.hawkeslearning.com/Statistics/dbs2/datasets.htmlarrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.The notation Z_(n) refers to the set {0,1,2,...,n-1}. For example, Z_(4)={0,1,2,3}. f: Z_(6) -> Z_(6) defined by f(x)=x^(2)+4(mod6). g: Z_(5) -> Z_(5) defined by g(x)=x^(2)-11(mod5). h: Z*Z -> Z defined by h(x,y)=x+2y. j: R-{3} -> R defined by j(x)=(4x)/(x-3).arrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Propositional Logic, Propositional Variables & Compound Propositions; Author: Neso Academy;https://www.youtube.com/watch?v=Ib5njCwNMdk;License: Standard YouTube License, CC-BY
Propositional Logic - Discrete math; Author: Charles Edeki - Math Computer Science Programming;https://www.youtube.com/watch?v=rL_8y2v1Guw;License: Standard YouTube License, CC-BY
DM-12-Propositional Logic-Basics; Author: GATEBOOK VIDEO LECTURES;https://www.youtube.com/watch?v=pzUBrJLIESU;License: Standard Youtube License
Lecture 1 - Propositional Logic; Author: nptelhrd;https://www.youtube.com/watch?v=xlUFkMKSB3Y;License: Standard YouTube License, CC-BY
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY