Chemical Principles: The Quest for Insight
7th Edition
ISBN: 9781464183959
Author: Peter Atkins, Loretta Jones, Leroy Laverman
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7D.1E
Interpretation Introduction
Interpretation:
The value of
Concept Introduction:
The activation energy is the minimum energy (over threshold energy) required by the reactant molecules to convert into products. An important condition for reaction to proceed is that the reacting species must be able to pass potential energy barrier. This is done by making use of activation energy
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Chemical Principles: The Quest for Insight
Ch. 7 - Prob. 7A.1ASTCh. 7 - Prob. 7A.1BSTCh. 7 - Prob. 7A.2ASTCh. 7 - Prob. 7A.2BSTCh. 7 - Prob. 7A.3ASTCh. 7 - Prob. 7A.3BSTCh. 7 - Prob. 7A.4ASTCh. 7 - Prob. 7A.4BSTCh. 7 - Prob. 7A.1ECh. 7 - Prob. 7A.2E
Ch. 7 - Prob. 7A.3ECh. 7 - Prob. 7A.4ECh. 7 - Prob. 7A.7ECh. 7 - Prob. 7A.8ECh. 7 - Prob. 7A.9ECh. 7 - Prob. 7A.10ECh. 7 - Prob. 7A.11ECh. 7 - Prob. 7A.12ECh. 7 - Prob. 7A.13ECh. 7 - Prob. 7A.14ECh. 7 - Prob. 7A.15ECh. 7 - Prob. 7A.16ECh. 7 - Prob. 7A.17ECh. 7 - Prob. 7A.18ECh. 7 - Prob. 7B.1ASTCh. 7 - Prob. 7B.1BSTCh. 7 - Prob. 7B.2ASTCh. 7 - Prob. 7B.2BSTCh. 7 - Prob. 7B.3ASTCh. 7 - Prob. 7B.3BSTCh. 7 - Prob. 7B.4ASTCh. 7 - Prob. 7B.4BSTCh. 7 - Prob. 7B.5ASTCh. 7 - Prob. 7B.5BSTCh. 7 - Prob. 7B.1ECh. 7 - Prob. 7B.2ECh. 7 - Prob. 7B.3ECh. 7 - Prob. 7B.4ECh. 7 - Prob. 7B.5ECh. 7 - Prob. 7B.6ECh. 7 - Prob. 7B.7ECh. 7 - Prob. 7B.8ECh. 7 - Prob. 7B.9ECh. 7 - Prob. 7B.10ECh. 7 - Prob. 7B.13ECh. 7 - Prob. 7B.14ECh. 7 - Prob. 7B.15ECh. 7 - Prob. 7B.16ECh. 7 - Prob. 7B.17ECh. 7 - Prob. 7B.18ECh. 7 - Prob. 7B.19ECh. 7 - Prob. 7B.20ECh. 7 - Prob. 7B.21ECh. 7 - Prob. 7B.22ECh. 7 - Prob. 7C.1ASTCh. 7 - Prob. 7C.1BSTCh. 7 - Prob. 7C.2ASTCh. 7 - Prob. 7C.2BSTCh. 7 - Prob. 7C.1ECh. 7 - Prob. 7C.2ECh. 7 - Prob. 7C.3ECh. 7 - Prob. 7C.4ECh. 7 - Prob. 7C.5ECh. 7 - Prob. 7C.6ECh. 7 - Prob. 7C.7ECh. 7 - Prob. 7C.8ECh. 7 - Prob. 7C.9ECh. 7 - Prob. 7C.11ECh. 7 - Prob. 7C.12ECh. 7 - Prob. 7D.1ASTCh. 7 - Prob. 7D.1BSTCh. 7 - Prob. 7D.2ASTCh. 7 - Prob. 7D.2BSTCh. 7 - Prob. 7D.1ECh. 7 - Prob. 7D.2ECh. 7 - Prob. 7D.3ECh. 7 - Prob. 7D.5ECh. 7 - Prob. 7D.6ECh. 7 - Prob. 7D.7ECh. 7 - Prob. 7D.8ECh. 7 - Prob. 7E.1ASTCh. 7 - Prob. 7E.1BSTCh. 7 - Prob. 7E.1ECh. 7 - Prob. 7E.2ECh. 7 - Prob. 7E.3ECh. 7 - Prob. 7E.4ECh. 7 - Prob. 7E.5ECh. 7 - Prob. 7E.6ECh. 7 - Prob. 7E.7ECh. 7 - Prob. 7E.8ECh. 7 - Prob. 7E.9ECh. 7 - Prob. 1OCECh. 7 - Prob. 7.1ECh. 7 - Prob. 7.2ECh. 7 - Prob. 7.3ECh. 7 - Prob. 7.4ECh. 7 - Prob. 7.5ECh. 7 - Prob. 7.6ECh. 7 - Prob. 7.7ECh. 7 - Prob. 7.9ECh. 7 - Prob. 7.11ECh. 7 - Prob. 7.14ECh. 7 - Prob. 7.15ECh. 7 - Prob. 7.17ECh. 7 - Prob. 7.19ECh. 7 - Prob. 7.20ECh. 7 - Prob. 7.23ECh. 7 - Prob. 7.25ECh. 7 - Prob. 7.26ECh. 7 - Prob. 7.29ECh. 7 - Prob. 7.30ECh. 7 - Prob. 7.31E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forwardThe decomposition of iodoethane in the gas phase proceeds according to the following equation: C2H5I(g)C2H4(g)+HI(g) At 660. K, k = 7.2 104 sl; at 720. K, k = 1.7 102 sl. What is the value of the rate constant for this first-order decomposition at 325C? If the initial pressure of iodoethane is 894 torr at 245C, what is the pressure of iodoethane after three half-lives?arrow_forward
- Gaseous azomethane (CH3N2CH3) decomposes to ethane and nitrogen when heated: CH3N2CH3(g) CH3CH3(g) + N2(g) The decomposition of azomethane is a first-order reaction with k = 3.6 104 s1 at 600 K. (a) A sample of gaseous CH3N2CH3 is placed in a flask and heated at 600 K for 150 seconds. What fraction of the initial sample remains after this time? (b) How long must a sample be heated so that 99% of the sample has decomposed?arrow_forwardThe decomposition of SO2Cl2 is a first-order reaction: SO2Cl2(g) SO2(g) + Cl2(g) The rate constant for the reaction is 2.8 103 min1 at 600 K. If the initial concentration of SO2Cl2 is 1.24 103 mol/L, how long will it take for the concentration to drop to 0.31 103 mol/L?arrow_forwardHydrogen peroxide, H2O2(aq), decomposes to H2O() and O2(g) in a reaction that is first-order in H2O2 and has a rate constant k = 1.06 103 min1 at a given temperature. (a) How long will it take for 15% of a sample of H2O2 to decompose? (b) How long will it take for 85% of the sample to decompose?arrow_forward
- The decomposition of ozone is a second-order reaction with a rate constant of 30.6 atm1 s1 at 95 C. 2O3(g)3O2(g) If ozone is originally present at a partial pressure of 21 torr, calculate the length of time needed for the ozone pressure to decrease to 1.0 torr.arrow_forwardFor a first order gas phase reaction A products, k = 7.2 104s1 at 660. K and k = 1.7 102s1 at 720. K. If the initial pressure of A is 536 torr at 295C, how long will it take for the pressure of A to decrease to 268 torr?arrow_forward(Section 11-5) A rule of thumb is that for a typical reaction, if concentrations are unchanged, a 10-K rise in temperature increases the reaction rate by two to four times. Use an average increase of three times to answer the questions below. (a) What is the approximate activation energy of a typical chemical reaction at 298 K? (b) If a catalyst increases a chemical reactions rate by providing a mechanism that has a lower activation energy, then what change do you expect a 10-K increase in temperature to make in the rate of a reaction whose uncatalyzed activation energy of 75 kJ/mol has been lowered to one half this value (at 298 K) by addition of a catalyst?arrow_forward
- Write a rate law for NO3(g) + O2(g) NO2(g) + O3(g) if measurements show the reaction is first order in nitrogen trioxide and second order in oxygen.arrow_forwardThe dimerization of butadiene, C4H6, to form 1,5-cyclooctadiene is a second-order process that occurs when the diene is heated. In an experiment, a sample of 0.0087 mol of C4H6 was heated in a 1.0-L flask. After 600. seconds, 21% of the butadiene had dimerized. Calculate the rate constant for this reaction.arrow_forwardIn Exercise 11.39, if the initial concentration of N2Oj is 0.100 .\1. how long will it take for the concentration to drop to 0.0100 times its original value? The decomposition of N2O5 in solution in carbon tetrachloride is a first-order reaction: 2N2O5—»4NO2 + O2 The rate constant at a given temperature is found to be 5.25 X 10-4 s-’. If the initial concentration of N2O5 is 0.200 M, what is its concentration after exactly 10 minutes have passed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY