(a)
Interpretation:
Plausible mechanism should be drawn given the major product of 2-methyl-2-hexene.
Concept Introduction:
E2 reaction is a bimolecular elimination reaction in which alkene compounds formed in a single step.
Rate of E2 reaction is depends upon the concentration of substrate and concentration of base. Because in a bimolecular reaction, there should involves two chemical entities.
Equation for the rate of E2 reaction is,
(b)
Interpretation:
The expected rate equation should be found for the given reaction.
Concept Introduction:
E2 reaction is a bimolecular elimination reaction in which alkene compounds formed in a single step. Alkenes are formed when alkyl halides are treated with bases via eliminating one β-proton and one α-halo group of the alkyl halide.
Rate of E2 reaction is depends upon the concentration of substrate and concentration of base. Because in a bimolecular reaction, there should involves two chemical entities.
Equation for the rate of E2 reaction is,
(c)
Interpretation:
The change in rate when concentration of base is doubled in given reaction has to be explained.
Concept Introduction:
E2 reaction is a bimolecular elimination reaction in which alkene compounds formed in a single step. Alkenes are formed when alkyl halides are treated with bases via eliminating one β-proton and one α-halo group of the alkyl halide.
Rate of E2 reaction is depends upon the concentration of substrate and concentration of base. Because in a bimolecular reaction, there should involves two chemical entities.
Equation for the rate of E2 reaction is,
(d)
Interpretation:
Energy level diagram should be drawn for the given reaction process.
Concept Introduction:
E2 reaction is a bimolecular elimination reaction in which alkene compounds formed in a single step. Alkenes are formed when alkyl halides are treated with bases via eliminating one β-proton and one α-halo group of the alkyl halide.
Energy diagram of an E2 reaction has only one hump because only one step is involved in the E2 reaction.
Transition state is a state in between the reactant and product.
In the transition state of E2 reaction: the abstraction of β-proton by the base, removal of leaving group (halo-group) and formation of double bond are taking place.
(e)
Interpretation:
The transition state should be drawn for the given transformation of reaction.
Concept Introduction:
E2 reaction is a bimolecular elimination reaction in which alkene compounds formed in a single step. Alkenes are formed when alkyl halides are treated with bases via eliminating one β-proton and one α-halo group of the alkyl halide.
Energy diagram of an E2 reaction has only one hump because only one step is involved in the E2 reaction.
Transition State: The state which defines the highest potential energy with respect to reaction co-ordinate between reactant and product. It is usually denoted by using the symbol ‘≠’.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
ORGANIC CHEMISTRY, WITH SOL. MAN/ STUDY
- Choose the option that is decreasing from biggest to smallest. Group of answer choices: 100 m, 10000 mm, 100 cm, 100000 um, 10000000 nm 10000000 nm, 100000 um, 100 cm, 10000 mm, 100 m 10000000 nm, 100000 um, 10000 mm, 100 cm, 100 m 100 m, 100 cm, 10000 mm, 100000 um, 10000000 nmarrow_forwardQ1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forwardWhich is NOT the typical size of a bacteria? 1000 nm 0.001 mm 0.01 mm 1 umarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY