Chemistry for Engineering Students
3rd Edition
ISBN: 9781285199023
Author: Lawrence S. Brown, Tom Holme
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 7.66PAE
Interpretation Introduction
Interpretation: Determine the reason for the fact that the number of atomic orbitals combined is always the same as that of the hybrid orbitals formed.
Concept Introduction: The mathematical process where the standard atomic orbitals are joined to make new atomic orbitals is called hybridization. The new atomic orbitals so formed are called hybrid orbitals which are localized on individual atoms. However, they have distinctive shapes and energies when compared to those of the standard atomic orbitals. They are important in valence bond hypothesis since they relate all the more intently to actual electron distribution that exists in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The table shows the tensile stress-strain values obtained for various
hypothetical metals. Based on this, indicate which is the most brittle
and which is the most tough (or most resistant).
Breaking strength Elastic modulus
Material Yield strength Tensile strength
Breaking strain
A
(MPa)
415
(MPa)
(MPa)
(GPa)
550
0.15
500
310
B
700
850
0.15
720
300
C
Non-effluence fracture
650
350
Please correct answer and don't used hand raiting
Materials. The following terms are synonyms: tension, effort and stress.
Chapter 7 Solutions
Chemistry for Engineering Students
Ch. 7 - List some factors influencing the biocompatibility...Ch. 7 - • use electron configurations to explain why...Ch. 7 - • describe die energy changes in the formation of...Ch. 7 - • define electronegativity and state how...Ch. 7 - • identify or predict polar, nonpolar, and ionic...Ch. 7 - • write Lewis electron structures for molecules or...Ch. 7 - • describe chemical bonding using a model based on...Ch. 7 - • explain how hybridization reconciles observed...Ch. 7 - • predict the geometry of a molecule from its,...Ch. 7 - • use models (real or software) to help visualize...
Ch. 7 - • explain the formation of multiple bonds in terms...Ch. 7 - • identify sigma and pi bonds in a molecule and...Ch. 7 - Define the term biocompatibility.Ch. 7 - List some properties associated with biomaterials...Ch. 7 - Prob. 7.3PAECh. 7 - Prob. 7.4PAECh. 7 - Prob. 7.5PAECh. 7 - Prob. 7.6PAECh. 7 - Why is the ion not found in nature?Ch. 7 - Why do nonmetals tend to form anions rather than...Ch. 7 - Prob. 7.9PAECh. 7 - 7.10 Arrange the members of each of the following...Ch. 7 - 7.11 Arrange the following sets of anions in order...Ch. 7 - 7.12 Which pair will form a compound with the...Ch. 7 - In a lattice, a positive ion is often surrounded...Ch. 7 - Use the concept of lattice energy to rationalize...Ch. 7 - 7.13 Figure 7-2 depicts the interactions of an ion...Ch. 7 - Mat type of bond is likely to form between one...Ch. 7 - 7.14 Describe the difference between a covalent...Ch. 7 - Prob. 7.18PAECh. 7 - Sketch a graph of the potential energy of two...Ch. 7 - Prob. 7.20PAECh. 7 - 7.17 Coulombic forces are often used to explain...Ch. 7 - 7.18 In terms of the strengths of the covalent...Ch. 7 - 7.19 If the formation of chemical bonds always...Ch. 7 - 7.20 Draw the Lewis dot symbol for each of the...Ch. 7 - 7.21 Theoretical models for the structure of...Ch. 7 - 7.22 Use Lewis dot symbols to explain why chlorine...Ch. 7 - 7.23 Define the term lone pair.Ch. 7 - 7.24 How many electrons are shared between two...Ch. 7 - 7.25 How does the bond energy of a double bond...Ch. 7 - 7.26 How is electronegativity defined?Ch. 7 - 7.27 Distinguish between electron affinity and...Ch. 7 - 7.28 Certain elements in the periodic table shown...Ch. 7 - 7.29 When two atoms with different...Ch. 7 - 7.30 The bond in HF is said to be polar, with the...Ch. 7 - 7.31 Why is a bond between two atoms with...Ch. 7 - Prob. 7.36PAECh. 7 - 7.33 In each group of three bonds, which bond is...Ch. 7 - Prob. 7.38PAECh. 7 - Prob. 7.39PAECh. 7 - 7.35 Which one of the following contains botb...Ch. 7 - Prob. 7.41PAECh. 7 - Prob. 7.42PAECh. 7 - 7.37 Draw the Lewis structure for each of the...Ch. 7 - 7.38 Draw a Lewis structure for each of the...Ch. 7 - Prob. 7.45PAECh. 7 - 7.40 Why is it impossible for hydrogen to be the...Ch. 7 - Prob. 7.47PAECh. 7 - 7.42 Draw resonance structure for (a) (b) and (c)Ch. 7 - Prob. 7.49PAECh. 7 - Prob. 7.50PAECh. 7 - Prob. 7.51PAECh. 7 - 7.46 Consider the nitrogen-oxygen bond lengths in...Ch. 7 - 7.47 Which of the species listed has a Lewis...Ch. 7 - 7.48 Identify what is incorrect in the Lewis...Ch. 7 - 7.49 Identify what is incorrect in the Lewis...Ch. 7 - 7.50 Chemical species are said to be isoelectronic...Ch. 7 - 7.51 Explain the concept of wave interference in...Ch. 7 - Distinguish between constructive and destructive...Ch. 7 - How is the concept of orbital overlap related to...Ch. 7 - 7.52 How does orbital overlap explain the buildup...Ch. 7 - 7.53 How do sigma and pi bonds differ? How are...Ch. 7 - 7.54 CO , CO2 , CH3OH , and CO32 , all contain...Ch. 7 - 7.55 Draw the Lewis dot structure of the following...Ch. 7 - 7.56 Draw the Lewis dot structures of the...Ch. 7 - 7.57 What observation about molecules compels us...Ch. 7 - Prob. 7.66PAECh. 7 - 7.59 What type of hybrid orbital is generated by...Ch. 7 - Considering only s and p atomic orbitals, list all...Ch. 7 - 7.61 What hybrid orbitals would be expected for...Ch. 7 - 7.62 What type of hybridization would you expect...Ch. 7 - 7.63 What physical concept forms the premise of...Ch. 7 - 7.64 Predict the geometry of the following...Ch. 7 - Prob. 7.73PAECh. 7 - Prob. 7.74PAECh. 7 - Prob. 7.75PAECh. 7 - 7.68 Give approximate values for the indicated...Ch. 7 - 7.69 Propene has the chemical formula Describe the...Ch. 7 - Prob. 7.78PAECh. 7 - Describe what happens to the shape about the...Ch. 7 - Prob. 7.80PAECh. 7 - Prob. 7.81PAECh. 7 - 7.72 How does an MSN differ from amorphous silica...Ch. 7 - Prob. 7.83PAECh. 7 - Prob. 7.84PAECh. 7 - Prob. 7.85PAECh. 7 - Prob. 7.86PAECh. 7 - 7.91 A Lewis structure for the oxalate ion is...Ch. 7 - Prob. 7.88PAECh. 7 - 7.93 An unknown metal M forms a chloride with the...Ch. 7 - Prob. 7.90PAECh. 7 - Prob. 7.91PAECh. 7 - 7.96 Consider the hydrocarbons whose structures...Ch. 7 - 7.97 Consider the structure shown below for as...Ch. 7 - Prob. 7.94PAECh. 7 - Prob. 7.95PAECh. 7 - Prob. 7.96PAECh. 7 - 7.101 Lead selenide nanocrystals may provide a...Ch. 7 - Prob. 7.98PAECh. 7 - Prob. 7.99PAECh. 7 - 7.104 Hydrogen azide, HN3 , is a liquid that...Ch. 7 - Prob. 7.101PAECh. 7 - Prob. 7.102PAECh. 7 - 7.107 How do the Lewis symbols for C, Si, and Ge...Ch. 7 - Prob. 7.104PAECh. 7 - Prob. 7.105PAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forward
- Please correct answer and don't used hand raiting and don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardConsider the following Figure 2 and two atoms that are initially an infinite distance apart, x =00, at which point the potential energy of the system is U = 0. If they are brought together to x = x, the potential energy is related to the total force P by dU dx = P Given this, qualitatively sketch the variation of U with x. What happens at x=x? What is the significance of x = x, in terms of the potential energy? 0 P, Force 19 Attraction Total Repulsion x, Distance Figure 2. Variation with distance of the attractive, repulsive, and total forces between atoms. The slope dP/dx at the equilibrium spacing xe is proportional to the elastic modulus E; the stress σb, corresponding to the peak in total force, is the theoretical cohesive strength.arrow_forward
- Denote the dipole for the indicated bonds in the following molecules. H3C ✓ CH3 B F-CCl 3 Br-Cl H3C Si(CH3)3 wwwwwww OH НО. HO HO OH vitamin C CH3arrow_forwardFor the SN2 reaction, draw the major organic product and select the correct (R) or (S) designation around the stereocenter carbon in the organic substrate and organic product. Include wedge-and-dash bonds and draw hydrogen on a stereocenter. Η 1 D EN Select Draw Templates More C H D N Erasearrow_forwardQ9: Explain why compound I is protonated on O while compound II is protonated on N. NH2 NH2 I IIarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781285199023
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY