
Interpretation:
The shaft design using the appropriate material for given condition should be determined.
Concept introduction:
Endurance strength is the value of maxium reveresed bending stress that a material can withstand without failure for finite number of cycle.
The following condition are specified based on number of cycle, If number of cycles are more than
Endurance Ratio:
It is defined as the ratio of endurance limit to tensile strength, the relationship is given below:
It helps to estimate the properties of fatigue using tensile test. The value of endurance limit for metallic material is 0.3 to 0.4.
Relationship for endurance limit is shown below:
Where,
F is the applied load in pounds.
L is the length I inch.
D is the diameter in inch.

Answer to Problem 7.66DP
Magnesium-Manganese alloy is best suitable material for shaft designing based on the value of fatigue strength.
Explanation of Solution
Given Information:
The value of load is
The material used along with the values of fatigue strength is shown in table below:
The required values are shown in table,
The relationship for Endurance limit is,
Considering the case for Aluminum manganese alloy,
The amount of load applied is
The value of fatigue strength for aluminum- manganese alloy is
Value of fatigue strength in psi is
Assuming the value of length as
Substituting the values in the above formula,
Thus, the required value of diameter for shaft designing is
Considering the case for Aluminum magnesium and zinc alloy,
The amount of load applied is
The value of fatigue strength for aluminum- manganese alloy is
Value of fatigue strength in psi is
Assuming the value of length as
Substituting the values in the above formula,
Thus, the required value of diameter for shaft designing is
Considering the case for Aluminum- Beryllium alloy,
The amount of load applied is
The value of fatigue strength for aluminum- manganese alloy is
Value of fatigue strength in psi is
Assuming the value of length as
Substituting the values in the above formula,
Thus, the required value of diameter for shaft designing is
Considering the case for Magnesium- Manganese alloy,
The amount of load applied is
The value of fatigue strength for aluminum- manganese alloy is
Value of fatigue strength in psi is
Assuming the value of length as
Substituting the values in the above formula,
Thus, the required value of diameter for shaft designing is
Considering the case for Beryllium alloy,
The amount of load applied is
The value of fatigue strength for aluminum- manganese alloy is
Value of fatigue strength in psi is
Assuming the value of length as
Substituting the values in the above formula,
Thus, the required value of diameter for shaft designing is
Considering the case for Tungsten alloy,
The amount of load applied is
The value of fatigue strength for aluminum- manganese alloy is
Value of fatigue strength in psi is
Assuming the value of length as
Substituting the values in the above formula,
Thus, the required value of diameter for shaft designing is
The required values are shown table,
Alloys | Fatigue Strength (MPa) | Calculated diameter in inch |
Al-Mg | 110 | 7.8229 |
Al-Mg-Zn | 225 | 6.162 |
Cu-Be | 295 | 5.630 |
Mg-Mn | 80 | 8.69 |
Be | 180 | 6.638 |
W | 320 | 5.480 |
Designing of shaft is based on the stress level. On comparing, the values of fatigue strength the alloys of magnesium and manganese gives the lower value of fatigue strength as compared to other.
Thus, based on the fatigue strength value, Mg-Mn is suitable for designing of the shaft.
The best suitable material for shaft designing based on the value of fatigue strength is Magnesium-Manganese alloy.
Want to see more full solutions like this?
Chapter 7 Solutions
Essentials of Materials Science and Engineering, SI Edition
- Given the following request to an AI chatbot, which response is better? Prompt Write a love poem about someone longing for a sandwich. Make it a sonnet, and give it a tone that straddles a serious love poem and whimsy appropriate for a poem about a sandwich.arrow_forwardHelp i keep getting the wrong answer. So I must be doing something wrong.arrow_forwardSuppose that a coin is tossed three so that the sample space is Let X represent the number of heads that can come up. i) Find the probability function corresponding to the random variable X. Assuming that the coin is fair ii) Find the distribution function for the random variable X. iii) Obtain its graph.arrow_forward
- Q9 A single-phase transformer, 2500 / 250 V, 50 kVA, 50 Hz has the following parameters, the Primary and secondary resistances are 0.8 ohm and 0.012 ohm respectively, the primary and secondary reactance are 4 ohm and 0.04 ohm respectively and the transformer gives 96% maximum efficiency at 75% full-load. The magnetizing component of-load current is 1.2 A on 2500 V side. 1- Draw the equivalent circuit referred to primary (H.V side) and inserts all the values in it 2- Find out Ammeter, voltmeter and wattmeter readings on open-circuit and short-circuit test. If supply is given to 2500 V side in both cases. Ans. O.C. Test (Vo= 2500 V, lo=1.24 A, Wo=781.25 w) S.C. Test (Vsc =164.924 V, Isc =20 A, Wsc =800 w )arrow_forwardQ. VI: An equimolar liquid mixture of benzene and toluene is separated into two product streams by distillation. At each point in the column some of the liquid vaporizes and some of the vapor stream condenses. The vapor leaving the top of the column, which contains 97 mole% benzene, is completely condensed and split into two equal fractions: one is taken off as the overhead product stream, and the other (the reflux) is recycled to the top of the column. The overhead product stream contains 89.2% of the benzene fed to the column. The liquid leaving the bottom of the column is fed to a partial reboiler in which 45% of it is vaporized. The vapor generated in the reboiler (the boilup) is recycled to become the rising vapor stream in the column, and the residual reboiler liquid is taken off as the bottom product stream. The compositions of the streams leaving the reboiler are governed by the relation, YB/(1 - YB) XB/(1 - XB) = 2.25 where YB and XB are the mole fractions of benzene in the…arrow_forward1. Comparison between Stack and Queue: Concepts and Use Cases A comparative study between stacks and queues in terms of behavior, structure, and real-world applications.arrow_forward
- Is developed App in play store much easier than in app store because i look app like human anonymus and like walter labs prioritize iphone app store first is it difficult to developed app on play store ? And btw i want to move to iphone anroid suckarrow_forwardBelow is a projection of the inertia ellipsoid in the b1-b2 plane (b1 and b2 are unit vectors). All points on the ellipsoid surface represent moments of inertia in various directions. The distance R is related to the distance D such that R = md. Determine m.arrow_forwardQ2-A)- Enumerate the various losses in transformer. Explain how each loss varies with (Load current, supply voltage). B)- Draw the pharos diagram at load on primary side.arrow_forward
- Q2- What are the parameters and loss that can be determined during open-circuit test of singlephase transformer. Draw the circuit diagram of open-circuit test and explain how can you calculate the Parameters and loss.arrow_forwardQ2-Drive the condition of maximum efficiency of single-phase transformer. Q1- A 5 KVA, 500/250 V ,50 Hz, single phase transformer gave the following reading: O.C. Test: 250 V,2 A, 50 W (H.V. side open) S.C. Test: 25 V10 A, 60 W (L.V. side shorted) Determine: i) The efficiency on full load, 0.8 lagging p.f. ii) Draw the equivalent circuit referred to primary and insert all the values it.arrow_forwardQ2- Describe various losses in transformer. Explain how each loss varies with load current, supply voltagearrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY





