(a)
Interpretation:
The value of bending stress for given condition should be calculated.
Concept introduction:
Stress is defined as the ratio of load per unit area. It is denoted by
Where,
P is the force in newton.
A is area in square meter.
Bending Stress:
Bending Stress is the amount of stress applied at a point of the body subjected to load results in bending. The formula for bending stress is shown below:
Where,
F is the load in newton.
S is the support span.
t is the thickness in mm.
w is the width in mm.
Standard Deviation:
Standard deviation is the value which defines the variation with respect to mean.
Calculation of value of n using the formula of standard deviation,
Where,
MeanMean is defined as the ratio of the sum of total components with respect to the number of components. The formula for mean is given by,
In mathematical terms the above equation is defined as,
The term
Answer to Problem 7.24P
The values of bending stress corresponding to load, thickness and width is shown below,
The requiredvalue of Standard Deviation is
Explanation of Solution
Given information:
The formula for calculation:
Where,
F is the load in newton.
S is the support span.
t is the thickness in mm.
w is the width in mm.
The values of load correspond to length and thickness is shown in table,
The value of supporting span (S) is
Based on given information,
Calculation of bending stress using spreadsheet using the formula of column,
Thus, the bending stress for the given condition of load is shown above.
Calculation of standard deviation using spreadsheet,
Thus, the required value of standard deviation is
(b)
Interpretation:
Weibull plot using the given condition should be determined. Also, the value of Weibull modulus should be calculated.
Concept introduction:
Weibull plot is used to define the relationship between the fracture of probability with characteristic length.
The relationship is given below:
Where,
F is the failure of probability.
The relation gives Failure of Probability,
Where,
N is the number of variable ranging from 1 to 25.
n is the value of specified strength ranging from lowest strength (1) to highest strength (25).
Answer to Problem 7.24P
Thus, the required Weibull plot is shown below:
Thus, the required value of Weibull modulus is
Explanation of Solution
Given information:
The formula for calculation:
Where,
F is the failure of probability.
The relation gives Failure of Probability,
Where,
N is the number of variable ranging from 1 to 25.
n is the value of specified strength ranging from lowest strength (1) to highest strength (25).
The values of load correspond to length and thickness is shown in table,
The value of lowest strength (n) is 1.
The value of highest strength (n) is 25.
Based on given information,
Calculation of fracture probability using spreadsheet and the relationship used is given below,
Calculation of characteristics length using the data of probability of failure.
Formula used is given below:
Where,
F is the failure of probability.
Based on the calculated values of characteristics length and probability of failure, the graph using linear regression is shown below:
Calculation of Weibull modulus,
Using the equation of straight line considering two points,
Where,
Substituting the values in the above formula,
Thus, the required value of Weibull modulus is
Want to see more full solutions like this?
Chapter 7 Solutions
Essentials of Materials Science and Engineering, SI Edition
- For the control system Plot root Locus and find the Jain of stability? RIST. K Kp (S+3) S+5 (s+1) s (S+2) (5765+18) 5-1 5²+35+4 * Mathematically, not by Matlab.arrow_forward3. Tong and Anderson (1996) obtained for BSA the following data in a polyacrylamide gel for the partition coefficient (K) as a function of the gel volume fraction (4). The BSA they used had a molecular weight of 67,000, a molecular radius of 3.6 nm, and a diffusivity of 6 × 10-7 cm2 s-1. Compare the Ogston equation K=exp + to their data and obtain an estimate for the radius of the cylindrical fibers (af) that comprise the gel. Hint: You will need to plot Ink as a function of gel volume fraction as part of your analysis. Please include your MATLAB, or other, code with your solution. Gel Volume Fraction (4) KBSA 0.00 1.0 0.025 0.35 0.05 0.09 0.06 0.05 0.075 0.017 0.085 0.02 0.105 0.03arrow_forwardAssignment 10, Question 1, Problem Book #189 Problem Statement An ideal Brayton cycle operates with no reheat, intercooling, or regeneration. The com- pressor inlet conditions are 30°C and 1 bar. The compression ratio is 11. The turbine inlet temperature is 1,300 K. Determine the turbine exit temperature, the thermal efficiency, and the back work ratio. Use an air standard analysis. Answer Table Correct Stage Description Your Answer Answer * 1 Compressor inlet enthalpy (kJ/kg) Due Date Grade (%) Weight Attempt Action/Message Part Type 1 2 1 Compressor inlet relative pressure 1 Compressor exit relative pressure 1 Compressor exit enthalpy (kJ/kg) Compressor work (kJ/kg) Turbine inlet enthalpy (kJ/kg) Dec 5, 2024 11:59 pm Dec 5, 2024 11:59 pm Dec 5, 2024 11:59 pm 0.0 0.0 1 1/5 Submit Stage 1 0.0 1 1 Dec 5, 2024 11:59 pm 0.0 1 Dec 5, 2024 11:59 pm 0.0 1 2 Turbine inlet relative pressure Dec 5, 2024 11:59 pm Dec 5, 2024 11:59 pm 0.0 1 1/5 0.0 1 2 Combustion chamber heat addition (kJ/kg) Dec…arrow_forward
- Assignment 10, Question 4, Problem Book #202 Problem Statement An ideal Brayton cycle with a two-stage compressor, a two-stage turbine, and a regenerator operates with a mass flow rate of 25 kg/s. The regenerator cold inlet is at 490 K and its effectiveness is 60%. Ambient conditions are 90 kPa and 20°C. The intercooler operates at 450 kPa and the reheater operates at 550 kPa. The temperature at the exit of the combustion chamber is 1,400 K. Heat is removed in the intercooler at a rate of 2.5 MW and heat is added in the reheater at a rate of 10 MW. Determine the thermal efficiency and the back work ratio. Use a cold air standard analysis with cp = 1.005 kJ/(kg K) and k = 1.4. . Answer Table Stage Description Your Answer Correct Answer Due Date Grade (%) 1 Thermal efficiency (%) Dec 5, 2024 11:59 pm 0.0 1 Weight Attempt Action/Message 1/5 Part Type Submit 1 Back work ratio (%) Dec 5, 2024 11:59 pm 0.0 1 * Correct answers will only show after due date has passed.arrow_forwardAssignment 10, Question 3, Problem Book #198 Problem Statement Consider a Brayton cycle with a regenerator. The regenerator has an effectiveness of 75%. The compressor inlet conditions are 1.2 bar and 300 K and the mass flowrate is 4.5 kg/s. The compressor outlet pressure is 9 bar. Both the compressor and turbine consist of a single isentropic stage. What minimum power output must be achieved before the regenerator begins to have a benefit? Use an air-standard analysis. Answer Table Correct Answer Stage Description Your Answer Due Date Grade (%) Part Weight Attempt Action/Message Туре 1 Power output (MW) Dec 5, 2024 11:59 pm 0.0 1 1/5 Submit * Correct answers will only show after due date has passed.arrow_forwardQ-3 Consider an engine operating on the ideal Diesel cycle with air as the working fluid. The volume of the cylinder is 1200 cm³ at the beginning of the Compression process, 75 cm³ at the end, and 150 cm³ after the heat addition process. Air is at 17°c and lookpa at the beginning of the compression proc ess. Determine @ The pressure at the beginning of the heat rejection process. the net work per cycle in kjⒸthe mean effective pressur. Answers @264.3 KN/m² ②0.784 kj or 544-6 kj © 697 KN 19 2 marrow_forward
- Not use ai pleasearrow_forwardCIS 115 Introduction to C++ May I please have a written review expressing my gratitude for a tutor that has given me guidance throughout the computer programming course? Thank you so much!arrow_forwardMath 130 Introduction to Java programming May I please have a written review expressing my gratitude for a tutor that has given my guidance throughout my computer programming course? Thank youarrow_forward
- find the signal genrator for the first circuitarrow_forwardPlease show all work, including; Ma? Ay? V at A,B,C. Shear diagram, M/EI diagram, tB/C, tC/A deflection curve and thetaC? Etc... 7-31. Use the moment area method and determine the slope at C and the displacement at B. EI is constant. Structural Analysis 10 editionarrow_forwardPlease help me translate the java code to jack codearrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY