University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.55P
To determine
The angle
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A skier starts at the top of a very large, frictionless snowball, with a very small initial speed, and skis straight down the side. At what point does she lose contact with the snowball and fly off at a tangent? That is, at the instant she loses contact with the snowball, what angle α does a radial line from the center of the snowball to the skier make with the vertical?
Pool players often pride themselves on their ability to impart a large speed to a pool ball. In the sport of billiards, event
organizers often remove one of the rails on a pool table to allow players to measure the speed of their break shots (the opening
shot of a game in which the player strikes a ball with his pool cue). With the rail removed, a ball can fly off the table, as shown
in the figure.
h
d
The surface of the pool table is h = 0.750 m from the floor.
The winner of the competition wants to know if he has broken the world speed record for the break shot of 32 mph (about
14.3 m/s). If the winner's ball landed a distance of d = 5.15 m from the table's edge, calculate the speed of his break shot vo.
Assume friction is negligible.
m/s
When a basketball player takes a standing shot, a coordinate system Oxy is formed with the
center of the ball as the origin (see figure). Denoting the center coordinate of the basket as
(x, y), the shot's height as H₁, and the ball's speed as vo, prove that the shot angle a must
satisfy the subsequent relationship to
make a shot:
tan α =
v²
gx
1 + 1
- (+2)
2g
v²
y
то
H₁
H₂
Chapter 7 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 7.1 - The figure shows two friction-less ramps. The...Ch. 7.2 - Consider the situation in Example 7.9 at the...Ch. 7.3 - In a hydroelectric generating station, falling...Ch. 7.4 - A particle moving along the x-axis is acted on by...Ch. 7.5 - The curve in Fig. 7.24b has a maximum at a point...Ch. 7 - A baseball is thrown straight up with initial...Ch. 7 - A projectile has the same initial kinetic energy...Ch. 7 - An object is released from rest at the top of a...Ch. 7 - An egg is released from rest from the roof of a...Ch. 7 - A physics teacher had a howling hall suspended...
Ch. 7 - Is it possible for a friction force to increase...Ch. 7 - A woman bounces on a trampoline, going a little...Ch. 7 - Fractured Physics. People often call their...Ch. 7 - (a) A book is lifted upward a vertical distance of...Ch. 7 - (a) A block of wood is pushed against a spring,...Ch. 7 - A 1.0-kg stone and a 10.0-kg stone are released...Ch. 7 - Two objects with different masses are launched...Ch. 7 - When people are cold, they often rub their hands...Ch. 7 - A box slides down a ramp and work is done on the...Ch. 7 - In physical terms, explain why friction is a...Ch. 7 - Since only changes in potential energy are...Ch. 7 - Figure 7.22a shows the potential-energy function...Ch. 7 - Figure 7.22b shows the potential-energy function...Ch. 7 - For a system of two particles we often let the...Ch. 7 - Explain why the points x = A and x = A in Fig....Ch. 7 - A particle is in neutral equilibrium if the net...Ch. 7 - The net force on a particle of mass m has the...Ch. 7 - The potential-energy function for a force F is...Ch. 7 - In one day, a 75-kg mountain climber ascends from...Ch. 7 - BIO How High Can We Jump? The maximum height a...Ch. 7 - CP A 90.0-kg mail bag hangs by a vertical rope 3.5...Ch. 7 - BIO Food Calories. The food calorie, equal to 4186...Ch. 7 - A baseball is thrown from the roof of a...Ch. 7 - A crate of mass M starts from rest at the top of a...Ch. 7 - BIO Human Energy vs. Insect Energy. For its size,...Ch. 7 - Prob. 7.8ECh. 7 - Prob. 7.9ECh. 7 - A 25.0-kg child plays on a swing having support...Ch. 7 - You are testing a new amusement park roller...Ch. 7 - Tarzan and Jane. Tarzan, in one tree, sights Jane...Ch. 7 - CP A 10.0-kg microwave oven is pushed 6.00 m up...Ch. 7 - An ideal spring of negligible mass is 12.00 cm...Ch. 7 - A force of 520 N keeps a certain spring stretched...Ch. 7 - BIO Tendons. Tendons are strong elastic fibers...Ch. 7 - A spring stores potential energy U0 when it is...Ch. 7 - A slingshot will shoot a 10-g pebble 22.0 m...Ch. 7 - A spring of negligible mass has force constant k =...Ch. 7 - A 1.20-kg piece of cheese is placed on a vertical...Ch. 7 - A spring of negligible mass has force constant k =...Ch. 7 - (a) For the elevator of Example 7.9 (Section 7.2),...Ch. 7 - A 2.50-kg mass is pushed against a horizontal...Ch. 7 - A 2.50-kg block on a horizontal floor is attached...Ch. 7 - You are asked to design a spring that will give a...Ch. 7 - A 75-kg roofer climbs a vertical 7.0-m ladder to...Ch. 7 - A 0.60-kg book slides on a horizontal table. The...Ch. 7 - CALC In an experiment, one of the forces exerted...Ch. 7 - A 62.0-kg skier is moving at 6.50 m/s on a...Ch. 7 - Vector A is in the direction 34.0 clockwise from...Ch. 7 - CALC A force parallel to the .v-axis acts on a...Ch. 7 - CALC The potential energy of a pair of hydrogen...Ch. 7 - CALC A small block with mass 0.0400 kg is moving...Ch. 7 - CALC An object moving in the xy-plane is acted on...Ch. 7 - CALC The potential energy of two atoms in a...Ch. 7 - A marble moves along the x-axis. The...Ch. 7 - At a construction site, a 65.0-kg bucket of...Ch. 7 - Two blocks with different masses are attached to...Ch. 7 - A block with mass 0.50 kg is forced against a...Ch. 7 - A 2.00-kg block is pushed against a spring with...Ch. 7 - A 2.00-kg block is pushed against a spring with...Ch. 7 - CP Riding a Loop-the- Loop. A car in an amusement...Ch. 7 - A 2.0-kg piece of wood slides on a curved surface...Ch. 7 - Up and Down the Hill. A 28-kg rock approaches the...Ch. 7 - A 15.0-kg stone slides down a snow-covered hill...Ch. 7 - CP A 2.8-kg block slides over the smooth, icy hill...Ch. 7 - Bungee Jump. A bungee cord is 30.0 m long and,...Ch. 7 - You are designing a delivery ramp for crates...Ch. 7 - The Great Sandini is a 60-kg circus performer who...Ch. 7 - A 1500-kg rocket is to be launched with an initial...Ch. 7 - A system of two paint buckets connected by a...Ch. 7 - These results are from a computer simulation for a...Ch. 7 - CP A 0.300-kg potato is tied to a string with...Ch. 7 - A 60.0-kg skier starts from rest at the top of a...Ch. 7 - Prob. 7.55PCh. 7 - A ball is thrown upward with an initial velocity...Ch. 7 - Prob. 7.57PCh. 7 - A truck with mass m has a brake failure while...Ch. 7 - CALC A certain spring found not to obey Hookes law...Ch. 7 - CP A sled with rider having a combined mass of 125...Ch. 7 - CALC A conservative force F is in the +x-direction...Ch. 7 - A 3.00-kg block is connected to two ideal...Ch. 7 - A 0.150-kg block of ice is placed against a...Ch. 7 - If a fish is attached to a vertical spring and...Ch. 7 - CALC You are an industrial engineer with a...Ch. 7 - A basket of negligible weight hangs from a...Ch. 7 - CALC A 3.00-kg fish is attached to the lower end...Ch. 7 - You are designing an amusement park ride. A cart...Ch. 7 - A 0.500-kg block, attached to a spring with length...Ch. 7 - CP A small block with mass 0.0400 kg slides in a...Ch. 7 - CP A small block with mass 0.0500 kg slides in a...Ch. 7 - CP Pendulum. A small rock with mass 0.12 kg is...Ch. 7 - A wooden block with mass 1.50 kg is placed against...Ch. 7 - CALC A small object with mass m = 0.0900 kg moves...Ch. 7 - CALC A cutting tool under microprocessor control...Ch. 7 - A particle moves along the x-axis while acted on...Ch. 7 - Prob. 7.77PCh. 7 - DATA A long ramp made of cast iron is sloped at a...Ch. 7 - DATA A single conservative force F(x) acts on a...Ch. 7 - CALC A proton with mass m moves in one dimension....Ch. 7 - BIO THE DNA SPRING. A DNA molecule, with its...Ch. 7 - BIO THE DNA SPRING. A DNA molecule, with its...Ch. 7 - BIO THE DNA SPRING. A DNA molecule, with its...Ch. 7 - BIO THE DNA SPRING. A DNA molecule, with its...
Knowledge Booster
Similar questions
- 3m v = 0 7. A projectile is launched at a 53° angle with a speed of 100 m/s. At the highest point, the projectile explodes into two parts, one three times heavier than the other. After the explosion, the lighter fragment's initial velocity is zero. a. What is the speed of the projectile just before the explosion? [60.2] b. What is the speed v of the heavier fragment just after the explosion? i) How high is the projectile when the explosion happens? ii) How long does it take each piece to reach the ground? с. d. i) How far horizontally is the projectile when the explosion happens? ii) If the projectile hadn't exploded, how far from the launch point would it have landed? (480.8m & 961.6m] e. What is the location of each fragment from the launch point when they hit the ground? [480.2m, 1121.76 m] f. i) What is the location of the center of mass of the two fragments when they land? ii) How does this compare with your answer in part d.ii?arrow_forwardA S B 3.766 h Sphere A with mass 1.8 kg is dropped from rest h = 9 m above the smooth ramp-shaped block (mB 0 = 30°). The block is initially at rest on a smooth horizontal surface. ? x 0% 9 0 If the coefficient of restitution for the impact is e = 0.8, find how far the block has moved 4 seconds after the impact. Neglect the size of the sphere and assume the block remains in constant contact with the supporting surface. m = 12 kg,arrow_forwardw1arrow_forward
- As part of an obstacle course, an athlete must kick a soccer ball into a 1 meter wide and 10 meter deep pit such that the ball hits a target at the bottom of the pit. In practice, a dynamics student that is participating in the race kicks the soccer ball such that the soccer ball will bounce off the far wall of the pit 5 meters below the surface and head towards the target. If the velocity of the ball before striking the wall at point A is v A = 3.02 – 103 m, determine the n-component of the ball's velocity vector (in m) after striking the wall. The size of the ball and the target are negligible relative to the dimensions of the pit, the gravity acceleration must be considered as 10 m and the coefficient of restitution at point A is e = 0.45. 5 т A 10 m 1marrow_forwardSince March 2006, NASAs Mars Reconnaissance Orbiter (MRO) has been in a circular orbit at an altitude of 316 km around Mars (Fig. P6.81). The acceleration due to gravity on the surface of the planet Mars is 0.376g, and its radius is 3.40 103 km. Assume the acceleration due to gravity at the satellite is the same as on the planets surface. a. What is MROs orbital speed? B. What is the period of the spacecrafts orbit? FIGURE P6.81arrow_forwardAn airplane of mass 4.0104kg flies horizontally at an altitude of 10 km with a constant speed of 250 m/s relative to Earth. (a) What is the magnitude of the airplane’s angular momentum relative to a ground observer directly below the plane? (b) Does the angular momentum change as the airplane flies along a constant altitude?arrow_forward
- A proton with an initial speed of 2.00 108 m/s in the x direction collides elastically with another proton initially at rest. The first protons velocity after the collision is 1.64 108 m/s at an angle of 35.0 with the horizontal. What is the velocity of the second proton after the collision?arrow_forward(a) What is the acceleration due to gravity on the surface of the Moon? (b) On the surface of Mars? The mass of Mars is SW 6.4181023kg and its radius is 3.38106m .arrow_forwardMost geologists believe that the dinosaurs became extinct 65 million years ago when a large comet or asteroid struck the earth, throwing up so much dust that the sun was blocked out for a period of many months. Suppose an asteroid with a diameter of 2.0 km and a mass of 0.50 × 10¹3 kg hits the earth (6.0 x 1024 kg) with an impact speed of 4.4 x 10 m/s. ▾ Part A What is the earth's recoil speed after such a collision? (Use a reference frame in which the earth was initially at rest.) Express your answer with the appropriate units. ► View Available Hint(s) v=3.2 10 D IT HA Submit Part B V = -8 Previous Answers X Incorrect; Try Again; 3 attempts remaining Submit m What percentage is this of the earth's speed around the sun? The earth orbits the sun at a distance of 1.5 x 10¹¹ m. Express your answer as a percentage. ► View Available Hint(s) IVE ΑΣΦ Provide Feedback S ? ? % of the earth's speed Next >arrow_forward
- A 600 gg model rocket is on a cart that is rolling to the right at a speed of 2.5 m/sm/s. The rocket engine, when it is fired, exerts a 8.0 NN vertical thrust on the rocket. Your goal is to have the rocket pass through a small horizontal hoop that is 20 mm above the launch point. At what horizontal distance left of the hoop should you launch?arrow_forwardA 1500 g model rocket is resting horizontally at the top edge of a 40m-high wall when it is accidentally bumped. The bump pushes it off the edge with a horizontal speed of 0.5 m/s and at the same time causes the engine to ignite. When the engine fires, it exerts a constant 20 N horizontal thrust away from the wall. How far from the base of the wall does the rocket land?arrow_forwardYou have a cylinder. You don't know what its internal structure looks like, but you plan to roll it down a ramp, as in this week's procedure. The ramp is 1 m long, and is elevated at an angle of 15°. The mass of the cylinder is 450 g and its diameter is 2.1 cm.If the velocity of the cylinder is 1.75 m/s at the bottom of the ramp, what is the value of k for this unusual cylinder (in Sl units)? Express your answer as a decimal (i.e. 1/4=0.25).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University